4.3 Article

Multiple Origins of the Cortical Gamma Rhythm

Journal

DEVELOPMENTAL NEUROBIOLOGY
Volume 71, Issue 1, Pages 92-106

Publisher

WILEY
DOI: 10.1002/dneu.20814

Keywords

gamma rhythm; interneuron; parvalbumin; glutamate; schizophrenia

Funding

  1. Medical Research Council (UK)
  2. Wellcome Trust
  3. Wolfson Foundation
  4. NIH/NINDS
  5. Humboldt Stiftung
  6. IBM
  7. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS044133] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Gamma rhythms (30-80 Hz) are a near-ubiquitous feature of neuronal population activity in mammalian cortices. Their dynamic properties permit the synchronization of neuronal responses to sensory input within spatially distributed networks, transient formation of local neuronal cell assemblies, and coherent response patterns essential for intercortical regional communication. Each of these phenomena form part of a working hypothesis for cognitive function in cortex. All forms of physiological gamma rhythm are inhibition based, being characterized by rhythmic trains of inhibitory postsynaptic potentials in populations of principal neurons. It is these repeating periods of relative enhancement and attenuation of the responsivity of major cell groups in cortex that provides a temporal structure shared across many millions of neurons. However, when considering the origins of these repeating trains of inhibitory events considerable divergence is seen depending on cortical region studied and mode of activation of gamma rhythm generating networks. Here, we review the evidence for involvement of multiple subtypes of interneuron and focus on different modes of activation of these cells. We conclude that most massively parallel brain regions have different mechanisms of gamma rhythm generation, that different mechanisms have distinct functional correlates, and that switching between different local modes of gamma generation may be an effective way to direct cortical communication streams. Finally, we suggest that developmental disruption of the endophenotype for certain subsets of gamma-generating interneuron may underlie cognitive deficit in psychiatric illness. (C) 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 92-106, 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available