4.4 Article

Differential regulation of axonal growth and neuromuscular junction assembly by HGF/c-Met signaling

Journal

DEVELOPMENTAL DYNAMICS
Volume 241, Issue 10, Pages 1562-1574

Publisher

WILEY-BLACKWELL
DOI: 10.1002/dvdy.23845

Keywords

HGF; c-Met signaling; neuromuscular junction (NMJ) development; axonal growth

Funding

  1. Hong Kong RGC GRF [662311]

Ask authors/readers for more resources

Background: During vertebrate neuromuscular junction (NMJ) development, contact between motor axons and muscle fibers is followed by pre- and post-synaptic specialization. Using Xenopus nerve-muscle cocultures, we recently showed that spinal neurons initially contacted muscle cells by means of filopodial processes, and that muscle-derived basic fibroblast growth factor induced axonal filopodia and slowed axonal advance to promote nerve-muscle interaction and NMJ establishment. In contrast, neurotrophins enhanced axonal growth but suppressed the extension of axonal filopodia and blocked NMJ formation. Results: Here we report that hepatocyte growth factor (HGF), which also supports motor neuron survival, was expressed by Xenopus muscle cells, and that forced expression of HGF in Xenopus spinal neurons inhibited the extension of axonal filopodia. Overexpression of the HGF-receptor c-Met in neurons also blocked the formation of axonal filopodia and furthermore sped up axonal growth, but a kinase-dead form of c-Met was unable to effect these changes. Importantly, treatment of nerve-muscle cocultures with recombinant HGF or the expression of HGF or active c-Met in neurons, or that of excess HGF in muscle, inhibited nerve-induced AChR clustering in muscle. Conclusions: Our results suggest that HGF/c-Met signaling in neurons promotes axonal growth but suppresses filopodial assembly in neurons and hinders NMJ establishment. Developmental Dynamics 241:15621574, 2012. (c) 2012 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available