4.7 Article

Maternal low-protein diet causes body weight loss in male, neonate Sprague-Dawley rats involving UCP-1-mediated thermogenesis

Journal

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
Volume 26, Issue 7, Pages 729-735

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2015.01.008

Keywords

Maternal low protein diet; Brown fat thermogenesis; Irisin; PRDM16; UCP-1; Placental irisin; FNDC5

Funding

  1. U.S. Department of Agriculture Agricultural Research Service Project [5450-51000-047-00D]

Ask authors/readers for more resources

Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT thermogenesis and BW of offspring in utero is not yet known. We fed obese-prone Sprague-Dawley dams 8% LP or 20% normal protein (NP) diets for 3 weeks prior to breeding and through pregnancy. BW and gene expression of interscapular BAT (iBAT) thermogenic markers were measured in male fetal (gestation day 18) and neonatal (day 0 or 1) offspring. BW of neonatal LP males was lower than NP males but no difference was observed in females. Gene and protein expression of UCP-1 and transcription factors PRDM16 and PPAR alpha in iBAT were 2- to 6-fold greater in LP than in NP male neonatal offspring. FNDC5, a precursor of irisin and activator of thermogenesis, was expressed 2-fold greater in neonatal LP iBAT than NP males. However, fetal iBAT UCP-1, PRDM16, PPAR alpha and irisin mRNA did not differ between LP and NP groups. Maternal LP diet had no effects on placental irisin and UCP-2 expression. These results suggest that prenatal protein restriction increases the risk for low BW through mechanisms affecting full-term offspring iBAT thermogenesis but not greatly altering fetal iBAT or placental thermogenesis. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available