4.5 Article

Affinity-driven blog cascade analysis and prediction

Journal

DATA MINING AND KNOWLEDGE DISCOVERY
Volume 28, Issue 2, Pages 442-474

Publisher

SPRINGER
DOI: 10.1007/s10618-013-0307-0

Keywords

Social networks; Network evolution; Blog cascade; Information flow

Funding

  1. NSFC [61202179, 61173089]

Ask authors/readers for more resources

Information propagation within the blogosphere is of much importance in implementing policies, marketing research, launching new products, and other applications. In this paper, we take a microscopic view of the information propagation pattern in blogosphere by investigating blog cascade affinity. A blog cascade is a group of posts linked together discussing about the same topic, and cascade affinity refers to the phenomenon of a blog's inclination to join a specific cascade. We identify and analyze an array of macroscopic and microscopic content-oblivious features that may affect a blogger's cascade joining behavior and utilize these features to predict cascade affinity of blogs. Based on these features, we present two non-probabilistic and probabilistic strategies, namely support vector machine (SVM) classification-based approach and Bipartite Markov Random Field-based (BiMRF) approach, respectively, to predict the probability of blogs' affinity to a cascade and rank them accordingly. Evaluated on a real dataset consisting of 873,496 posts, our experimental results demonstrate that our prediction strategy can generate high quality results (-measure of 72.5 % for SVM and 71.1 % for BiMRF) comparing with the approaches using traditional or singular features only such as elapsed time, number of participants which is around 11.2 and 8.9 %, respectively. Our experiments also showed that among all features identified, the number of quasi-friends is the most important factor affecting bloggers' inclination to join cascades.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available