4.7 Article

The tuning of P-donor ligands: the aryl and other pendent group effects (PGEs) revisited

Journal

DALTON TRANSACTIONS
Volume -, Issue 11, Pages 1999-2003

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b816868g

Keywords

-

Ask authors/readers for more resources

Electronic and steric effects of P-donor ligands can be modified by varying the pendent groups attached to the phosphorus atoms. However, the so-called Aryl Effects of phosphites and other P-donor ligands that contain no aryl groups can be shown simply to be additional examples of electronic Pendent Group Effects (PGEs) by which effects are transmitted to the phosphorus atoms or through them. These effects are quite distinct from those caused by varying sigma-donicity and pi-acidity parameters, and are strictly proportional to the number of pendent groups of a particular type. In each case, the extent of the effect is determined by the difference between the actual property observed and that predicted on the basis that the ligand behaves in the same way as alkyl phosphines after allowing for steric and pi-acidity effects. The PGEs are therefore unique to particular pendent groups and to the method of measuring their effects. They are not parameters in the sense of being generally applicable in Linear Free Energy Relationships. The PGEs of a variety of pendent groups are derived from the so-called aryl effects determined by Giering & Prock et al. for vertical ionization potentials (IPs) and some other properties of the P-donor ligands. In almost all cases the IPs are reduced by the PGEs, and the extent of the reduction (in eV) decreases in the sequence C(6)F(5) (-0.67) similar to Cl (-0.67) < Pyrr (-0.53) < Ph (-0.49) < OR (-0.19) < OCH(2)CH(2)Cl (-0.07) < etpb (-0.03) < N(C(4)H(8)) (+0.01). Different PGEs are found for other P-donor-dependent properties although they are simply related to each other.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available