4.4 Article Proceedings Paper

The influence of MWNT composite on the stretchability of conductive nanopaste screen-printed on elastomeric substrate

Journal

CURRENT APPLIED PHYSICS
Volume 12, Issue -, Pages S99-S103

Publisher

ELSEVIER
DOI: 10.1016/j.cap.2012.02.029

Keywords

Stretchability; Multiwall carbon nanotube; Silver nanoparticle; Screen printing; Thermoplastic polyurethane

Ask authors/readers for more resources

A hybrid silver (Ag)-multiwalled carbon nanotube (MWNT) nanopaste was screen-printed onto a thermoplastic polyurethane (TPU) substrate to create a stretchable electronic interconnection. The effects of various ratios of MWNT contents on the direct current electrical resistivity and the stretchability were investigated by a four-point probe method and a single tensile test, respectively. Square and dog-bone patterns were fabricated by using a 400-mesh stencil mask on a TPU substrate. All samples were pre-dried and then sintered at 140 degrees C for 1 h in air. The experimental results showed the electrical resistivity of the hybrid Ag-MWNT nanopaste increased with increasing MWNT volume fraction. On the other hand, the hybrid Ag-MWNT nanopaste containing a higher composite ratio of MWNT showed larger tensile resistance. Through optical microscope (OM) observation, we found there were Ag nanoparticles on the MWNT networks under a tensile load of 5%. Prior to rupture-failure, the maximum displacement rate was measured to evaluate the stretchability. The hybrid Ag-MWNT pattern containing 1.2 wt% of MWNT showed the largest displacement rate, 3.4%, this is a 2.70 times increase compared to the Ag nanopaste without MWNTs. To improve both the electrical and mechanical properties of the hybrid Ag-MWNT nanopaste, further research is required. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available