4.7 Review

Landscape Patterns of Significant Soil Nutrients and Contaminants in the Greater Everglades Ecosystem: Past, Present, and Future

Journal

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/10643389.2010.530930

Keywords

Everglades; phosphorus; sulfur; carbon; mercury; soils; landscape

Ask authors/readers for more resources

The primary goal of this review and synthesis effort is to summarize present landscape patterns of key soil constituents such as carbon (C), phosphorus (P), sulfur (S), and mercury (Hg), all of which are of historical and present interest with respect to Everglades restoration. A secondary goal is to highlight the importance of landscape scale monitoring and assessment of soils in the Everglades Protection Area (EPA) with respect to present and future restoration efforts. Review of present information derived from the two independent landscape scale studies revealed significant patterns of soil thickness, organic matter, and P in the EPA. Two soil constituents of concern, Hg (biological toxicity) and S (linked to increased P cycling), also exhibit spatial patterns at the landscape scale, suggesting a need for focused efforts of restoration. Significant patterns of soil enrichment and change suggest a dynamic interaction between environmental stressors and soil biogeochemical properties across the landscape. Trends and patterns at the landscape scale in the EPA suggest that landscape scale monitoring and assessment is necessary and critical to determining the success of restoration efforts. However, several key questions, surrounding appropriate temporal and spatial sampling scales, the standardization of sampling methods, and the significance of short range variability must be addressed to facilitate future landscape scale assessment efforts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available