4.7 Article

In situ monitoring of corrosion processes within the bulk of AlMgSi alloys using X-ray microtomography

Journal

CORROSION SCIENCE
Volume 50, Issue 12, Pages 3455-3466

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.corsci.2008.09.015

Keywords

Aluminium; X-ray microtomography; Acid corrosion; Exfoliation corrosion

Funding

  1. Alcan Technology Fund
  2. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]
  3. Engineering and Physical Sciences Research Council [EP/D50029X/1] Funding Source: researchfish

Ask authors/readers for more resources

Susceptibility to localized corrosion of AlMgSi (AA6016 and AA6111) alloys in certain aggressive environments is high. In this study, synchrotron X-ray microtomography was used to monitor non-destructively corrosion processes within bulk materials. In the selected aggressive solutions, surface-deformed layers showed high localized corrosion susceptibility, but are more stable than the bulk of the alloy during corrosion propagation. In addition, exfoliation-like attack was observed as a transition from intergranular attack. This directed corrosion is not related to grain or crystallographic structure. Finally, intermetallic particles dissolution inside the materials after contact with aggressive solution of the intergranular corrosion path was evidenced. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Review Materials Science, Multidisciplinary

On the potential of aluminum crossover alloys

Lukas Stemper, Matheus A. Tunes, Ramona Tosone, Peter J. Uggowitzer, Stefan Pogatscher

Summary: Commercial aluminum alloys have been optimized for specific applications for almost a century, but new alloy design strategies are needed to overcome limitations in lightweighting concepts. Crossover alloys combine advantageous properties and may see broader industrial application in the near future.

PROGRESS IN MATERIALS SCIENCE (2022)

Article Chemistry, Multidisciplinary

Elucidating the Rate-Limiting Processes in High-Temperature Sodium-Metal Chloride Batteries

Daniel Landmann, Enea Svaluto-Ferro, Meike V. F. Heinz, Patrik Schmutz, Corsin Battaglia

Summary: Sodium-metal chloride batteries are a sustainable and safe alternative to lithium-ion batteries for large-scale stationary electricity storage, but their rate capability is limited. Metal-ion diffusion in the electrolyte is found to limit the chlorination process of both nickel and iron electrodes, instead of metal-ion migration through the metal chloride conversion layer.

ADVANCED SCIENCE (2022)

Review Materials Science, Multidisciplinary

Making sustainable aluminum by recycling scrap: The science of dirty alloys

Dierk Raabe, Dirk Ponge, Peter J. Uggowitzer, Moritz Roscher, Mario Paolantonio, Chuanlai Liu, Helmut Antrekowitsch, Ernst Kozeschnik, David Seidmann, Baptiste Gault, Frederic De Geuser, Alexis Deschamps, Christopher Hutchinson, Chunhui Liu, Zhiming Li, Philip Prangnell, Joseph Robson, Pratheek Shanthraj, Samad Vakili, Chad Sinclair, Laure Bourgeois, Stefan Pogatscher

Summary: Aluminum has both positive and negative impacts on sustainability. Recycling aluminum can improve sustainability, while extracting it from ores is energy-intensive. The amount of recyclable aluminum is expected to double by 2050, offering an opportunity for a circular economy. However, the presence of elemental contamination in post-consumer scrap poses challenges for alloy design.

PROGRESS IN MATERIALS SCIENCE (2022)

Article Nanoscience & Nanotechnology

High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical properties

Bernhard Trink, Irmgard Weifssensteiner, Peter J. Uggowitzer, Katharina Strobel, Stefan Pogatscher

Summary: This study investigates the effect of a high volume fraction of Fe-rich intermetallic phases on microstructure evolution and mechanical properties in a cold rolled Al-Mg-Si wrought alloy. The results show that the alloy with almost 10 vol-% Fe-rich intermetallic phase exhibits an unusually attractive combination of strength and ductility, in addition to a substantially increased strain hardening typical of hetero-structured materials, and can facilitate a higher usage of scrap input.

SCRIPTA MATERIALIA (2022)

Article Materials Science, Multidisciplinary

MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cu

Phillip Dumitraschkewitz, Matheus A. Tunes, Cameron R. Quick, Diego Santa Rosa Coradini, Thomas M. Kremmer, Parthiban Ramasamy, Peter J. Uggowitzer, Stefan Pogatscher

Summary: The solidification behavior of a eutectic AlCu specimen is investigated using in situ scanning transmission electron microscope experiments. By varying the cooling conditions, different rapid solidification morphologies are obtained. Additionally, the spheroidization of lamellas during annealing at elevated temperatures is studied.

ACTA MATERIALIA (2022)

Article Nanoscience & Nanotechnology

Closed die forging of a Mg-Al-Ca-Mn-Zn lean alloy

Nikolaus P. Papenberg, Aurel Arnoldt, Bernhard Trink, Peter J. Uggowitzer, Stefan Pogatscher

Summary: This study investigates the forging process of a heat-treatable magnesium alloy AXMZ1000 for a piston rod. The microstructural evolution and mechanical properties of two different stock materials, cast and extruded, are compared and analyzed. The results show that comparable microstructures are obtained with both starting materials, and the mechanical properties achieved with extruded feedstock are slightly better.

MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING (2022)

Article Chemistry, Multidisciplinary

Femtosecond Laser-Texturing the Surface of Ti-Based Implants to Improve Their Osseointegration Capacity

William A. Lackington, Peter Schweizer, Mariya Khokhlova, Claudia Cancellieri, Stefanie Guimond, Anne-Lise Chopard-Lallier, Joelle Hofstetter, Patrik Schmutz, Xavier Maeder, Markus Rottmar

Summary: In modern oral maxillofacial surgery, long-term stability of implants is closely related to the quality of osseointegration. This study investigates the influence of femtosecond laser-texturing on physicochemical properties, blood-implant interactions, and osseointegration potential of titanium-aluminium-vanadium (TiAlV) implant surfaces. Laser-texturing enables the production of designer surfaces with defined micro-scale features, showing comparable biological performance to state-of-the-art implants.

ADVANCED MATERIALS INTERFACES (2022)

Article Multidisciplinary Sciences

Forging of an age-hardenable Mg-Al-Ca-Mn-Zn alloy on industrial scale

Nikolaus Papenberg, Thomas Hatzenbichler, Florian Grabner, Peter J. Uggowitzer, Stefan Pogatscher

Summary: Weight reduction is significant in transportation industries as it affects fuel consumption and vehicle range. Different materials are commonly used to take advantage of specific properties, with aluminum alloys used in both cast and wrought states. However, magnesium alloys, which are lighter, are only used in castings. Despite progress in scientific research on magnesium wrought alloys, their industrial implementation is limited, resulting in a lack of safety and structural applications. To promote industrial application and acceptance of these materials, the forging process of an automotive control arm was investigated. By using an age-hardenable Mg-Al-Ca-Zn-Mn lean alloy, which can be processed similarly to AL alloys, the study provides information on forming characteristics and challenges.

SN APPLIED SCIENCES (2023)

Article Engineering, Environmental

Electrodeposited manganese oxides as efficient photocatalyst for the degradation of tetracycline antibiotics pollutant

Roberto Cestaro, Laetitia Philippe, Albert Serra, Elvira Gomez, Patrik Schmutz

Summary: In this study, electrodeposited manganese oxides (MnyOx) films were used as a visible-light-driven photocatalyst for the removal and mineralization of Tetracycline (TC) antibiotics. The best performing manganese oxide showed 92.4% TC mineralization efficiency after 180 min of LED visible illumination. Hydroxyl radicals (center dot OH) were found to be the main active species responsible for the TC degradation. The degradation of the oxide surface structure was identified as the key factor limiting the photocatalytic activity.

CHEMICAL ENGINEERING JOURNAL (2023)

Article Nanoscience & Nanotechnology

Severe plastic deformation close to the melting point enables Mg-Fe nanocomposites with exceptional strength

Milad Roostaei, Peter J. Uggowitzer, Reinhard Pippan, Oliver Renk

Summary: The attractive properties of Mg-bcc nanocomposites have gained increasing interest, but bulk fabrication has been unsuccessful due to strain localization within the Mg-phase. Through high-pressure torsion, the deformation behavior and resulting microstructures of Mg-Fe composites were analyzed at different applied strains and processing temperatures. Surprisingly, processing at 73% of Mg's melting point accelerated microstructural refinement and improved homogeneity, leading to a three-fold increase in hardness compared to ambient processing. This suggests that further optimization could potentially create Mg-based materials with strength beyond a gigapascal.

SCRIPTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Fine-grained aluminium crossover alloy for high-temperature sheet forming

Sebastian Samberger, Irmgard Weissensteiner, Lukas Stemper, Christina Kainz, Peter J. Uggowitzer, Stefan Pogatscher

Summary: This study presents age-hardenable, fine-grained AlMgZnCu crossover alloys intended for superplastic and quick plastic forming processes. These alloys utilize T-phase (Mg32(Al,Zn)49) to refine the grain structure and increase age-hardening. The study demonstrates the importance of particle stimulated nucleation (PSN) using T-phase particles, which leads to a fine grain size as low as 4 μm. The resulting alloys have excellent high-temperature forming properties and high stability.

ACTA MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Processing and microstructure-property relations of Al-Mg-Si-Fe crossover alloys

Bernhard Trink, Irmgard Weissensteiner, Peter J. Uggowitzer, Katharina Strobel, Anna Hofer-Roblyek, Stefan Pogatscher

Summary: This study introduces new alloys that combine the age-hardening capability of Al-Mg-Si alloys with the microstructure-controlling effect on processing of primary Fe-rich intermetallic phases used in foil stock. Processing and microstructure-property relations in new crossover aluminum alloys derived from 6xxx and 8xxx foil stock alloys are shown. The study demonstrates the attractive combinations of strength and ductility achieved in these new alloys.

ACTA MATERIALIA (2023)

Article Biochemical Research Methods

In situ transmission electron microscopy as a toolbox for the emerging science of nanometallurgy

Diego S. R. Coradini, Matheus A. Tunes, Patrick Willenshofer, Sebastian Samberger, Thomas Kremmer, Phillip Dumitraschkewitz, Peter J. Uggowitzer, Stefan Pogatscher

Summary: The present study demonstrates a methodology for in situ investigation of nanoalloying using metallic nanomaterials as reactants within a transmission electron microscope. The method can be used as a starting point for studying nanometallurgy and subsequent alloying of materials. The results showed that both Au and Cu nanomaterials could alloy with Al when melted in the transmission electron microscope. Overall, these results suggest that transmission electron microscope-based in situ melting and alloying is a valuable technique for studying the metallurgical processing of nanomaterials.

LAB ON A CHIP (2023)

Article Materials Science, Multidisciplinary

Strain-induced clustering in Al alloys

Philip Aster, Phillip Dumitraschkewitz, Peter J. Uggowitzer, Florian Schmid, Georg Falkinger, Katharina Strobel, Peter Kutlesa, Michael Tkadletz, Stefan Pogatscher

Summary: This study investigated the formation of solute clusters and their contribution to strain hardening in aluminum alloys by using APT and tensile testing. The results showed that clusters could form during plastic deformation, which was referred to as strain-induced clustering.

MATERIALIA (2023)

Article Materials Science, Multidisciplinary

Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture design

Oliver Renk, Irmgard Weissensteiner, Martina Cihova, Eva-Maria Steyskal, Nicole G. Sommer, Michael Tkadletz, Stefan Pogatscher, Patrik Schmutz, Jurgen Eckert, Peter J. Uggowitzer, Reinhard Pippan, Annelie M. Weinberg

Summary: The widespread use of magnesium is hindered by its low strength and poor corrosion resistance. However, the use of nanoscale composite architecture design can overcome these limitations and enable the development of high-strength magnesium-iron composites with low degradation rates.

NPJ MATERIALS DEGRADATION (2022)

Article Materials Science, Multidisciplinary

The effect of Fe in the rapid thermal explosion synthesis and the high-temperature corrosion behavior of porous Co-Al-Fe intermetallic

Zhichao Shang, Xiaoping Cai, Farshid Pahlevani, Yan Zheng, Akbar Hojjati-Najafabadi, Xinran Gao, Baojing Zhang, Peizhong Feng

Summary: High porosity Co-Al-Fe intermetallics with 3D-microstructures were successfully synthesized in one step via a thermal explosion reaction. The link between pore structure and permeability was investigated using 3D-XRM technology. The corrosion resistance of the samples with different Fe contents was studied at 900 degrees C under an oxygen/sulphur atmosphere for up to 120 h. The results showed that the samples maintained stable pore structure and intact internal matrices, attributed to the formation of a thin protective layer on the surface. In addition, inward diffusion of S resulted in the formation of FeS nodules.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Inhibition for atmospheric corrosion of mild steel by lysine salts with graphene oxide interlayer in situ modulation

Lian Ma, Hain Yang, Daquan Zhang, Wei Wu

Summary: In this study, an environmentally friendly volatile corrosion inhibitor, lysine salts (LA), was prepared between graphene oxide (GO) layers using an in situ intercalation technique. The corrosion inhibition effect of LA was evaluated, and it was found that LA-GO2 achieved a 99.3% corrosion inhibition efficiency after composition optimization. The inhibition of the electrochemical anodic process on the surface of mild steel was the main reason for the high corrosion inhibition efficiency of LA-GO2. The properties of the surface film on the corroded steel were also characterized in detail to understand the corrosion inhibition mechanism of LA-GO2.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Ablation of advanced C/C-ZrC-SiC leading edge composites

Running Wang, Jiaping Zhang, Bing Liu, Jie Fei, Qiangang Fu

Summary: By introducing a tailored SiC-C interphase, the carbon fiber can be effectively protected, improving the mechanical and ablation properties of leading edge shaped C/C-ZrC-SiC composites.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Surface modification and interface strengthening strategies for fly ash and its application in anti-corrosion coatings

Zihua Wang, Chijia Wang, Ruitao Wang, Jiapeng Deng, Kun Zhang, Yanji Zhu, Huaiyuan Wang

Summary: A robust anti-corrosive coating has been developed using functional fly ash, which demonstrates excellent corrosion resistance and improved mechanical properties. The coating achieves these enhancements through molecular cross-linking design and surface augmentation techniques, resulting in a significantly improved impedance modulus compared to pure polyurea coatings.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Phase transformation and diffusion in high-temperature oxidation of FeCrNi medium entropy alloy

Haofei Sun, Meifeng Li, Hao Zhang, Jing Liu

Summary: The oxidation behavior of FeCrNi medium entropy alloy was investigated through experimental observations and density functional theory (DFT) calculations. The study found that at 900 degrees C, the alloy forms a desirable and continuous oxide layer, while at 1000 degrees C, the oxide layer becomes discontinuous with penetration of oxide. These observations highlight the significant role of phase structure in promoting the formation of protective oxide scales and influencing oxidation resistance.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy

Yang Li, Ke Ma, Jingjun Xu, Jingjing Li, Yueming Li, Yi Zhang, Jun Zuo, Meishuan Li

Summary: Cr2AlC diffusion barrier effectively blocks the diffusion of Ti, enhancing the stability and spalling resistance of the Al2O3 scales between NiCrAlY coating and TiAl alloy.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Improved heat and corrosion resistance of high electrical conductivity Al-Mg-Si alloys by multi-alloying of Ce, Sc and Y

Weiyi Wang, Qinglin Pan, Xiangdong Wang, Bing Liu

Summary: By adding Ce, Sc, Y and Zr elements to Al-Mg-Si alloy, the microstructure of the alloy can be regulated, and the corrosion and heat resistance of the materials can be improved.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

In-situ measurement of electrochemical activity related to filiform corrosion in organic coated steel by scanning vibrating electrode technique and scanning micropotentiometry

Andrea Cristoforetti, Javier Izquierdo, Ricardo M. Souto, Flavio Deflorian, Michele Fedel, Stefano Rossi

Summary: This study presents a new approach to studying the mechanism of filiform corrosion in organic coated steel using the scanning vibrating electrode technique (SVET) and micropotentiometry (potentiometric SECM). The electrochemical activity under the coating was evaluated by mapping the ionic current densities coming from artificial defects made in specific locations of the filament. Antimony tips were also used to investigate the pH changes associated with different corrosion reactions at the metal-paint interface. Local pH levels along the filament in the anodic and cathodic regions were determined.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Oxide scale growth behavior of alumina-forming austenitic stainless steel exposed to supercritical water

Yang Gao, Dayun Sun, Zhu Liu, Shuo Cong, Rui Tang, Yanping Huang, Lefu Zhang, Xianglong Guo

Summary: The corrosion characteristics of a novel alumina-forming austenitic steel in high-pressure high-temperature water environment were studied. The addition of aluminum has a negative effect on the continuity of the alumina scale.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Investigating the influence of pigmentation on the electrolyte transport properties of organic coatings using ORP-EIS

Negin Madelat, Benny Wouters, Peter Visser, Zahra Jiryaeisharahi, Kristof Marcoen, Shoshan T. Abrahami, Annick Hubin, Herman Terryn, Tom Hauffman

Summary: This work explores the correlation between electrolyte transport properties and the variation of pigment volume concentration (PVC) in organic coatings. An odd random phase electrochemical impedance spectroscopy (ORP-EIS) approach is used to analyze the diffusion of ions independent from water uptake. The results show that a higher PVC leads to a more homogeneous coating structure, resulting in faster diffusion of ions and enhanced water uptake.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Early stages of liquid-metal corrosion on pre-oxidized surfaces of austenitic stainless steel 316L exposed to static Pb-Bi eutectic at 400 °C

Eloa Lopes Maia, Serguei Gavrilov, Valentyn Tsisar, Kitty Baert, Iris De Graeve

Summary: The effect of pre-oxidation in air at 300-500°C on the initiation and development of liquid metal corrosion attack on 316L austenitic steel in static lead-bismuth eutectic (LBE) has been investigated. It was found that pre-formed oxide films can protect the surface against dissolution, while high temperature pre-oxidation leads to localized corrosion.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Understanding the non-steady electrochemical mechanism on SCC of 304 SS under applied polarization potentials

Baozhuang Sun, Qiuyu Wang, Yue Pan, Zhiyong Liu, Cuiwei Du, Xiaogang Li

Summary: In this study, a non-steady electrochemical model was established to investigate stress corrosion cracking (SCC). The model was verified using 304 SS with various microstructures, confirming its effectiveness in assessing SCC susceptibility.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Corrosion mechanism and corrosion behavior prediction of Cu-10Ni-X alloys in NaCl solution combining DFT calculation and experiments

Xingyu Xiao, Xinhua Liu, Zhilei Wang, Xuexu Xu, Mingying Chen, Jianxin Xie

Summary: The corrosion behavior and mechanisms of Cu-10Ni-X (Al, Fe, Mn, Cr, Sn, Ti, Zn) alloys in a 3.5% NaCl solution were systematically investigated. Both computational and experimental results revealed that except Ti, other elements could enhance the corrosion resistance of Cu2O passivation film.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Effect of aluminium addition on the oxidation and carburization behaviour of austenitic stainless in high-temperature SCO2 environments

Gen Zhang, Yan-Ping Huang, E. Jiang, Wei -Wei Liu, Hong Yang, Jing Xiong, Yong-Fu Zhao

Summary: The addition of aluminum has a significant influence on the intermetallic compounds in AFA alloys, particularly increasing the content of B2-NiAl phase. In the SCO2 environment, the oxide scales formed on AFA alloys with aluminum were thinner than on ASS without aluminum, and the structure of the oxide scales changed to a double-layer structure.

CORROSION SCIENCE (2024)

Article Materials Science, Multidisciplinary

Improved thermal properties and CMAS corrosion resistance of rare-earth monosilicates by adjusting the configuration entropy with RE-doping

Yuxuan He, Guozheng Xiao, Chao Wang, Xuefeng Lu, Liuyuan Li, Shiying Liu, Yusheng Wu, Zhanjie Wang

Summary: The relationship between configurational entropy and lattice distortion in novel rare earth monosilicates was investigated, and the effect of configurational entropy on their properties was studied. The results showed that lattice distortion increased with the increase of configurational entropy, but a highly symmetrical crystal structure was formed when the configurational entropy was large enough, inhibiting the lattice distortion.

CORROSION SCIENCE (2024)