4.1 Article

Increased expression of plasminogen activator inhibitor type-1 (PAI-1) in HEPG2 cells induced by insulin mediated by the 3 '-untranslated region of the PAI-1 gene and its pharmacologic implications

Journal

CORONARY ARTERY DISEASE
Volume 21, Issue 3, Pages 144-150

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/MCA.0b013e328335790e

Keywords

cardiovascular risk; insulin; liver; metabolic syndrome; oxidative stress; plasminogen activator inhibitor-1; statins; thrombosis

Funding

  1. Ministry of Education, Science, Sport, and Culture of Japan

Ask authors/readers for more resources

Objective Insulin increases, through several molecular mechanisms, expression of plasminogen activator inhibitor-1 (PAI-1), the major physiologic inhibitor of fibrinolysis. This phenomenon has been implicated as a cause of accelerated coronary artery disease and the increased incidence of acute coronary syndromes associated with type 2 diabetes. We have previously reported that physiologic and pharmacologic concentrations of insulin induce PAI-1 synthesis in human HepG2 cells and that simvastatin can attenuate its effects. This study was performed to further elucidate mechanisms responsible for the insulin-induced PAI-1 production. Methods Concentrations of PAI-1 mRNA were determined by real-time PCR, and PAI-1 protein was assayed by western blotting. PAI-1 promoter (-829 to +36 bp) activity was assayed with the use of luciferase reporter assays. The potential role of the 30-untranslated region (UTR) in the PAI-1 gene was assayed with the use of luciferase constructs containing the 30-UTR. Oxidative stress was measured by loading cells with carboxy-2,7 dichlorodihydrofluorescein. Results Insulin increased PAI-1 promoter activity, PAI-1 mRNA, and accumulation of PAI-1 protein in the conditioned media. Insulin-inducible PAI-1 promoter activity was attenuated by simvastatin. Experiments performed with luciferase reporters containing the 3'-UTR showed that insulin increased luciferase activity through this region. Insulin also increased oxidative stress. Both insulin-inducible luciferase activity through the 3'-UTR and oxidative stress were attenuated by simvastatin. Conclusion Insulin can increase PAI-1 expression through multiple mechanisms including induction mediated by the 3'-UTR of the PAI-1 gene. Accordingly, beneficial pleiotropic effects of statins on coronary artery disease may be attributable, in part, to attenuation of overexpression of PAI-1 mediated by the 3'-UTR in syndromes of insulin resistance ( such as the metabolic syndrome) and type 2 diabetes. Coron Artery Dis 21: 144-150 (C) 2010 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available