4.5 Article

The influence of limestone reefs on storm erosion and recovery of a perched beach

Journal

CONTINENTAL SHELF RESEARCH
Volume 47, Issue -, Pages 16-27

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.csr.2012.08.001

Keywords

Hard-bottom beach; Geological framework; Rock platform; Beach morphodynamics; Yanchep Lagoon; Western Australia

Categories

Funding

  1. Samaha Research Scholarship
  2. Western Australian Marine Science Institution (WAMSI) [6.1]

Ask authors/readers for more resources

Mechanisms through which naturally-occurring hard landforms, such as rock and coral reefs, influence coastal sediment transport are still poorly understood. Therefore, field investigations were undertaken during storm conditions on the sandy beaches of Yanchep Lagoon in southwestern Australia, which are perched on Quaternary limestone reefs. During two consecutive winter storms, the response of three subaerial beach profiles were quantified at: (a) an Exposed Profile which was fronted to seaward by a predominantly sandy substrate: (b) a Reef Profile that was fronted directly seaward by limestone outcrops submerged below mean sea level: and (c) a Bluff Profile where the dry beach was perched on a limestone bluff that reached above mean sea level and that contained a shallow coastal lagoon. The subaerial beach response to the storms had considerable spatial variation alongshore and was strongly dependent on the local rock topography. The Exposed Profile eroded most with a 2 m-high scarp cut into the dune while the dunes at the Reef and Bluff Profiles were stable. The Bluff Profile also eroded considerably and the coastal lagoon widened and deepened. The Reef Profile was the most stable overall because erosion was balanced by short periods of accretion during the storm period which was partly due to sediment supplied by longshore transport through the coastal lagoon from the Bluff Profile. During the month after the storms wave energy was relatively low and the beach at the Exposed Profile accreted almost to the pre-storm volume, although the scarp in the dune was still present. The Reef Profile accreted most in the month after the storms while recovery at the Bluff Profile was low. It appeared that the bluff inhibited onshore sediment transport during and after the storms and in addition, strong currents in the lagoon transported sediment alongshore to supply the other beach profiles. These observations indicated that rock topography, especially elevation relative to sea level determined if beach erosion was reduced during storms and whether accretion was dampened in the post-storm recovery phase. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available