4.7 Review

Pathogen Resistance Mediated by IL-22 Signaling at the Epithelial-Microbiota Interface

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 427, Issue 23, Pages 3676-3682

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2015.10.013

Keywords

pathogen resistance; intestinal microbiota; mucus; IL-22 signaling; epithelium

Funding

  1. Wellcome Trust [098051]
  2. Centre for Therapeutic Target Validation

Ask authors/readers for more resources

Intestinal colonization resistance to bacterial pathogens is generally associated, among other factors, with mucosal homeostasis that preserves the integrity of the intestinal barrier. Mucosal homeostasis depends on physical and molecular interactions between three components: the resident microbiota, the epithelial layer and the local immune system. The cytokine IL-22 helps to orchestrate this three-way interaction. IL-22 is produced by immune cells present beneath the epithelium and is induced by bacteria present in the intestine. IL-22 stimulates the epithelial cells via the IL-22RA1-IL-10R2 receptor complex inducing changes in the expression of genes involved in the maintenance of epithelial barrier integrity, with a variety of functions in pathogen resistance such as mucus layer modifications and hydration, tight junction fortification and the production of a broad range of bactericidal compounds. These mechanisms of pathogen resistance, in turn, affect the microbiota composition and create an environment that excludes pathogens. Here we highlight the role of IL-22 as key mediator in the give-and-take relationship between the microbiota and the host that impacts pathogen resistance. (C) 2015 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biochemistry & Molecular Biology

Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers

Ankita Chadda, Alexander G. Kozlov, Binh Nguyen, Timothy M. Lohman, Eric A. Galburt

Summary: In this study, it was found that the DNA damage response in Mycobacterium tuberculosis differs from well-studied model bacteria. The DNA repair helicase UvrD1 in Mtb is activated through a redox-dependent process and is closely associated with the homo-dimeric Ku protein. Additionally, Ku protein is shown to stimulate the helicase activity of UvrD1.

JOURNAL OF MOLECULAR BIOLOGY (2024)