4.5 Article

Temporal convergence criteria for time-accurate viscous simulations of separated flows

Journal

COMPUTERS & FLUIDS
Volume 66, Issue -, Pages 140-156

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2012.06.010

Keywords

Temporal convergence; Static stall; Dynamic stall; Newton subiterations

Ask authors/readers for more resources

Airfoils and wings undergoing static and dynamic stall still elude accurate simulation by computational methods. While significant emphasis has been placed on the quantification of grid dependence, as well as influence of the turbulence method, many elements defining temporal convergence remain ad hoc. To address this, convergence and accuracy for two different turbulence methods were examined for both static and dynamic stall. New approaches to define numerical convergence that include an assessment of the physical accuracy have been developed and evaluated via a blind analysis at other stall conditions. A key finding is the need to ensure that the combination of time step and subiterations achieves a true second order accurate solution. It was also observed that accurate prediction of separation was controlled primarily by the turbulent transport terms, while the mean flow equations influenced reattachment. Temporal convergence of dynamic stall can be quantitatively assessed by an approach developed in this effort. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available