4.7 Review

Ab initio molecular simulations with numeric atom-centered orbitals

Journal

COMPUTER PHYSICS COMMUNICATIONS
Volume 180, Issue 11, Pages 2175-2196

Publisher

ELSEVIER
DOI: 10.1016/j.cpc.2009.06.022

Keywords

Ab initio molecular simulations; Density-functional theory; Atom-centered basis functions; Hartree-Fock; MP2; O(N) DFT; GW self-energy

Funding

  1. Finnish IT center for sciences
  2. CSC
  3. Alexander von Humboldt (AvH)

Ask authors/readers for more resources

We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute ab initio molecular simulations (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets allowing the, calculation to range from qualitative tight-binding like accuracy to meV-Ievel total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment. the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a Scal-apack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available