4.7 Article

Gaussian matrix elements in a cylindrical harmonic oscillator basis

Journal

COMPUTER PHYSICS COMMUNICATIONS
Volume 180, Issue 7, Pages 1013-1040

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cpc.2008.12.021

Keywords

Deformed harmonic oscillator; Gaussian interaction; Matrix elements; Gogny force

Ask authors/readers for more resources

We derive a formalism, the separation method, for the efficient and accurate calculation of two-body matrix elements for a Gaussian potential in the cylindrical harmonic-oscillator basis. This formalism is of critical importance for Hartree-Fock and Hartree-Fock-Bogoliubov calculations in deformed nuclei using realistic, finite-range effective interactions between nucleons. The results given here are also relevant for microscopic many-body calculations in atomic and molecular physics, as the formalism can be applied to other types of interactions beyond the Gaussian form. The derivation is presented in great detail to emphasize the methodology, which relies on generating functions. The resulting analytical expressions for the Gaussian matrix elements are checked for speed and accuracy as a function of the number of oscillator shells and against direct numerical integration. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available