4.7 Article Proceedings Paper

Long-time self-diffusion for Brownian Gaussian-core particles

Journal

COMPUTER PHYSICS COMMUNICATIONS
Volume 179, Issue 1-3, Pages 77-81

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cpc.2008.01.009

Keywords

self-diffusion; Brownian dynamics; simulations; colloids

Ask authors/readers for more resources

Using extensive Brownian dynamics computer simulations, the long-time self-diffusion coefficient is calculated for Gaussian-core particles as a function of the number density. Both spherical and rod-like particles interacting via Gaussian segments are considered. For increasing concentration we find that the translational self-diffusion behaves non-monotonically reflecting the structural reentrance effect in the equilibrium phase diagram. Both in the limits of zero and infinite concentration, it approaches its short-time value. The microscopic Medina-Noyola theory qualitatively accounts for the translational long-time diffusion. The long-time orientational diffusion coefficient for Gaussian rods, on the other hand, remains very close to its short-time counterpart for any density. Some implications of the weak translation-rotation coupling for ultrasoft rods are discussed. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available