4.7 Article

Design of functionally graded piezocomposites using topology optimization and homogenization - Toward effective energy harvesting materials

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2013.07.003

Keywords

Piezoelectric materials; Topology optimization; Functionally graded materials; Homogenization method; Material design; Polygonal finite elements

Funding

  1. CNPq (National Council for Research and Development, Brazil)
  2. FAPESP (Sao Paulo State Foundation Research Agency) [2008/57086-6, 2011/02387-4]
  3. US National Science Foundation [1321661]
  4. Donald B. and Elizabeth M. Willett endowment at the University of Illinois at Urbana-Champaign (UIUC)
  5. CNPq [303689/2009-9]
  6. Div Of Civil, Mechanical, & Manufact Inn
  7. Directorate For Engineering [1321661] Funding Source: National Science Foundation

Ask authors/readers for more resources

In the optimization of a piezocomposite, the objective is to obtain an improvement in its performance characteristics, usually by changing the volume fractions of constituent materials, its properties, shape of inclusions, and mechanical properties of the polymer matrix (in the composite unit cell). Thus, this work proposes a methodology, based on topology optimization and homogenization, to design functionally graded piezocomposite materials that considers important aspects in the design process aiming at energy harvesting applications, such as the influence of piezoelectric polarization directions and the influence of material gradation. The influence of the piezoelectric polarization direction is quantitatively verified using the Discrete Material Optimization (DMO) method, which combines gradients with mathematical programming to solve a discrete optimization problem. The homogenization method is implemented using the graded finite element concept, which takes into account the continuous gradation inside the finite elements. One of the main questions answered in this work is, quantitatively, how the microscopic stresses can be reduced by combining the functionally graded material (FGM) concept with optimization. In addition, the influence of polygonal elements is investigated, quantitatively, when compared to quadrilateral 4-node finite element meshes, which are usually adopted in material design. However, quads exhibit one-node connections and are susceptible to checkerboard patterns in topology optimization applications. To circumvent these problems, Voronoi diagrams are used as an effective means of generating irregular polygonal meshes for piezocomposite design. The present results consist of bi-dimensional unit cells that illustrate the methodology proposed in this work. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mechanics

Dynamic response of deep-water catenary risers made of functionally graded materials

J. C. R. Albino, C. A. Almeida, I. F. M. Menezes, G. H. Paulino

Summary: This study examines the structural behavior of a steel catenary riser with a segment of functionally graded material at the touchdown zone. It is found that incorporating FGM in the riser configuration improves curvatures near the TDZ, which is critical for mitigating fatigue damage.

MECHANICS RESEARCH COMMUNICATIONS (2021)

Article Engineering, Multidisciplinary

Universal machine learning for topology optimization

Heng Chi, Yuyu Zhang, Tsz Ling Elaine Tang, Lucia Mirabella, Livio Dalloro, Le Song, Glaucio H. Paulino

Summary: A machine learning-based topology optimization framework is proposed, featuring online training, localized online training strategy, and online updating scheme. Numerical investigations and design examples demonstrate the high scalability and accuracy of the framework.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2021)

Article Computer Science, Interdisciplinary Applications

PolyStress: a Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method

Oliver Giraldo-Londono, Glaucio H. Paulino

Summary: PolyStress is a Matlab implementation for topology optimization with local stress constraints, which addresses linear and material nonlinear problems. The implementation is based on PolyTop and utilizes a Newton-Raphson scheme and an augmented Lagrangian method to solve nonlinear elasticity and stress-constrained problems consistently.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2021)

Article Engineering, Mechanical

Reprogrammable Kinematic Branches in Tessellated Origami Structures

Phanisri P. Pratapa, Ke Liu, Siva P. Vasudevan, Glaucio H. Paulino

Summary: This research investigates the folding kinematics of a Morph pattern structure through rigid panel assumptions, exploring the different modes and hybrid states that can be achieved. It discusses the interplay between local and global kinematics, studying how folding deformations can result in reprogrammable morphing behavior. Through numerical simulations, the study verifies the deformation characteristics predicted analytically.

JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME (2021)

Article Mechanics

Bio-Inspired Origami Metamaterials With Metastable Phases Through Mechanical Phase Transitions

Ke Liu, Tomohiro Tachi, Glaucio H. Paulino

Summary: This paper introduces a novel origami pattern called the Shrimp pattern, which is applied to multi-phase architected metamaterials that achieve phase transition mechanically through snap-through. By tessellating unit cells with different geometries, a complex yet navigable energy landscape is created, leading to multiple metastable phases of the material.

JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME (2021)

Article Chemistry, Multidisciplinary

Optimally-Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing

Fernando Senhora, Emily D. Sanders, Glaucio H. Paulino

Summary: Spinodal architected materials optimize design of multiscale structures by varying spinodal class, orientation, and porosity, leading to efficient material placement along stress trajectories with enhanced mechanical and biological functions.

ADVANCED MATERIALS (2022)

Article Engineering, Mechanical

Design of Single Degree-of-Freedom Triangular Resch Patterns with Thick-panel Origami

Fufu Yang, Miao Zhang, Jiayao Ma, Zhong You, Ying Yu, Yan Chen, Glaucio H. Paulino

Summary: Resch patterns are tessellation origami patterns consisting of more than one type of polygons. They are generally rigid foldable but have a large number of degrees of freedom. In order to achieve one-DOF forms of triangular Resch pattern units, the thick-panel technique is employed to replace spherical linkages with spatial linkages. The compatibility among all the vertices is studied by kinematic analysis, and two design schemes are obtained to form a one-DOF origami structure.

MECHANISM AND MACHINE THEORY (2022)

Article Multidisciplinary Sciences

Soft robotic origami crawler

Qiji Ze, Shuai Wu, Jun Nishikawa, Jize Dai, Yue Sun, Sophie Leanza, Cole Zemelka, Larissa S. Novelino, Glaucio H. Paulino, Ruike Renee Zhao

Summary: Researchers have developed a magnetically actuated small-scale origami crawler with inplane contraction, which can crawl and steer in confined spaces. This crawler has magnetically tunable structural stiffness, allowing it to overcome large resistances, and it has the ability to store and release drugs internally, demonstrating its multifunctionality.

SCIENCE ADVANCES (2022)

Article Engineering, Mechanical

Experimental realization of tunable Poisson's ratio in deployable origami metamaterials

Diego Misseroni, Phanisri P. Pratapa, Ke Liu, Glaucio H. Paulino

Summary: This study presents a novel experimental setup for studying the Poisson effects in 2D origami tessellations. The setup was used to measure the Poisson's ratio of the Morph, Miura-ori, and Eggbox patterns, and the results were consistent with theory and simulations. This experimental technique can be applied to investigate other tunable properties of origami metamaterials.

EXTREME MECHANICS LETTERS (2022)

Article Chemistry, Multidisciplinary

Triclinic Metamaterials by Tristable Origami with Reprogrammable Frustration

Ke Liu, Phanisri P. Pratapa, Diego Misseroni, Tomohiro Tachi, Glaucio H. Paulino

Summary: This research explores the geometrical-frustration-induced anisotropy and inhomogeneity to achieve unique properties of metamaterials. Using a triclinic metamaterial system based on a Trimorph origami pattern, a folding motion is created that results in an unusual Poisson effect and reversible auxeticity. Tessellating tristable unit cells produces phenomena resembling linear and point defects due to geometric frustration. This frustration can be reprogrammed into distinct stable and inhomogeneous states by selecting the location of point defects. These findings have potential applications in wave propagation control and compliant microrobots.

ADVANCED MATERIALS (2022)

Article Engineering, Multidisciplinary

Machine learning for topology optimization: Physics-based learning through an independent training strategy

Fernando V. Senhora, Heng Chi, Yuyu Zhang, Lucia Mirabella, Tsz Ling Elaine Tang, Glaucio H. Paulino

Summary: This article proposes an artificial intelligence approach to accelerate topology optimization, capturing the underlying physics of the problem. The framework demonstrates effectiveness and scalability through various design examples.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2022)

Article Multidisciplinary Sciences

Discrete symmetries control geometric mechanics in parallelogram-based origami

James McInerney, Glaucio H. Paulino, D. Zeb Rocklin

Summary: This study develops a formalism to investigate the interplay between geometric symmetries and functionality in origami crease patterns. It reveals that the anticommuting symmetry defines a class of crease pattern geometries with equal and opposite Poisson's ratios.

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (2022)

Article Computer Science, Interdisciplinary Applications

Limiting the first principal stress in topology optimization: a local and consistent approach

Oliver Giraldo-Londono, Jonathan B. Russ, Miguel A. Aguilo, Glaucio H. Paulino

Summary: This study presents a formulation for topology optimization of structures with constraints on the first principal stress, solved using the augmented Lagrangian method to consider local stress constraints. Numerical examples demonstrate the effectiveness of the framework for practical problems with numerous local constraints, such as the three-dimensional antenna support bracket with over one million constraints.

STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION (2022)

Article Materials Science, Multidisciplinary

On topology optimization with gradient-enhanced damage: An alternative formulation based on linear physics

Jonathan B. Russ, Glaucio H. Paulino

Summary: In order to enhance structural resistance to material failure, numerous topology optimization formulations have been proposed. This research extends the former method by constraining local failure criteria in a manner inspired by typical gradient-enhanced damage models. The proposed formulation relies on linear physics during the optimization procedure, greatly increasing its speed and robustness. Additionally, the study investigates the size effect introduced by using a numerical model and provides select observations, such as spurious fin-like patterns that can emerge depending on the structure and loading conditions. Finally, the load capacity of each optimized design is verified through a post-optimization verification procedure unaffected by the design parameterization and material interpolation schemes.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2023)

Article Multidisciplinary Sciences

Topology optimization with local stress constraints and continuously varying load direction and magnitude: towards practical applications

Fernando V. Senhora, Ivan F. M. Menezes, Glaucio H. Paulino

Summary: Topology optimization problems often focus on a single or a few discrete load cases, while practical structures are subjected to infinitely many load cases that vary in intensity, location, and direction. This study proposes a locally stress-constrained topology optimization method that considers continuously varying load directions to ensure structural integrity under more realistic loading conditions.

PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES (2023)

Article Engineering, Multidisciplinary

Probabilistic physics-guided transfer learning for material property prediction in extrusion deposition additive manufacturing

Akshay J. Thomas, Mateusz Jaszczuk, Eduardo Barocio, Gourab Ghosh, Ilias Bilionis, R. Byron Pipes

Summary: We propose a physics-guided transfer learning approach to predict the thermal conductivity of additively manufactured short-fiber reinforced polymers using micro-structural characteristics obtained from tensile tests. A Bayesian framework is developed to transfer the thermal conductivity properties across different extrusion deposition additive manufacturing systems. The experimental results demonstrate the effectiveness and reliability of our method in accounting for epistemic and aleatory uncertainties.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression

Zhen Zhang, Zongren Zou, Ellen Kuhl, George Em Karniadakis

Summary: In this study, deep learning and artificial intelligence were used to discover a mathematical model for the progression of Alzheimer's disease. By analyzing longitudinal tau positron emission tomography data, a reaction-diffusion type partial differential equation for tau protein misfolding and spreading was discovered. The results showed different misfolding models for Alzheimer's and healthy control groups, indicating faster misfolding in Alzheimer's group. The study provides a foundation for early diagnosis and treatment of Alzheimer's disease and other misfolding-protein based neurodegenerative disorders using image-based technologies.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

A neural network-based enrichment of reproducing kernel approximation for modeling brittle fracture

Jonghyuk Baek, Jiun-Shyan Chen

Summary: This paper introduces an improved neural network-enhanced reproducing kernel particle method for modeling the localization of brittle fractures. By adding a neural network approximation to the background reproducing kernel approximation, the method allows for the automatic location and insertion of discontinuities in the function space, enhancing the modeling effectiveness. The proposed method uses an energy-based loss function for optimization and regularizes the approximation results through constraints on the spatial gradient of the parametric coordinates, ensuring convergence.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Stabilized mixed material point method for incompressible fluid flow

Bodhinanda Chandra, Ryota Hashimoto, Shinnosuke Matsumi, Ken Kamrin, Kenichi Soga

Summary: This paper proposes new and robust stabilization strategies for accurately modeling incompressible fluid flow problems in the material point method (MPM). The proposed approach adopts a monolithic displacement-pressure formulation and integrates two stabilization strategies to ensure stability. The effectiveness of the proposed method is validated through benchmark cases and real-world scenarios involving violent free-surface fluid motion.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

A unified analytical expression of the tangent stiffness matrix of holonomic constraints

Chao Peng, Alessandro Tasora, Dario Fusai, Dario Mangoni

Summary: This article discusses the importance of the tangent stiffness matrix of constraints in multibody systems and provides a general formulation based on quaternion parametrization. The article also presents the analytical expression of the tangent stiffness matrix derived through linearization. Examples demonstrate the positive effect of this additional stiffness term on static and eigenvalue analyses.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

On the detection of nonlinear normal mode-related isolated branches of periodic solutions for high-dimensional nonlinear mechanical systems with frictionless contact interfaces

Thibaut Vadcard, Fabrice Thouverez, Alain Batailly

Summary: This contribution presents a methodology for detecting isolated branches of periodic solutions to nonlinear mechanical equations. The method combines harmonic balance method-based solving procedure with the Melnikov energy principle. It is able to predict the location of isolated branches of solutions near families of autonomous periodic solutions. The relevance and accuracy of this methodology are demonstrated through academic and industrial applications.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Machine learning powered sketch aided design via topology optimization

Weisheng Zhang, Yue Wang, Sung-Kie Youn, Xu Guo

Summary: This study proposes a sketch-guided topology optimization approach based on machine learning, which incorporates computer sketches as constraint functions to improve the efficiency of computer-aided structural design models and meet the design intention and requirements of designers.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering

Leilei Chen, Zhongwang Wang, Haojie Lian, Yujing Ma, Zhuxuan Meng, Pei Li, Chensen Ding, Stephane P. A. Bordas

Summary: This paper presents a model order reduction method for electromagnetic boundary element analysis and extends it to computer-aided design integrated shape optimization of multi-frequency electromagnetic scattering problems. The proposed method utilizes a series expansion technique and the second-order Arnoldi procedure to reduce the order of original systems. It also employs the isogeometric boundary element method to ensure geometric exactness and avoid re-meshing during shape optimization. The Grey Wolf Optimization-Artificial Neural Network is used as a surrogate model for shape optimization, with radar cross section as the objective function.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Volume conservation issue within SPH models for long-time simulations of violent free-surface flows

C. Pilloton, P. N. Sun, X. Zhang, A. Colagrossi

Summary: This paper investigates the smoothed particle hydrodynamics (SPH) simulations of violent sloshing flows and discusses the impact of volume conservation errors on the simulation results. Different techniques are used to directly measure the particles' volumes and stabilization terms are introduced to control the errors. Experimental comparisons demonstrate the effectiveness of the numerical techniques.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Convolution finite element based digital image correlation for and strain measurements

Ye Lu, Weidong Zhu

Summary: This work presents a novel global digital image correlation (DIC) method based on a convolution finite element (C-FE) approximation. The C-FE based DIC provides highly smooth and accurate displacement and strain results with the same element size as the usual finite element (FE) based DIC. The proposed method's formulation and implementation, as well as the controlling parameters, have been discussed in detail. The C-FE method outperformed the FE method in all tested examples, demonstrating its potential for highly smooth, accurate, and robust DIC analysis.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)

Mojtaba Ghasemi, Mohsen Zare, Amir Zahedi, Pavel Trojovsky, Laith Abualigah, Eva Trojovska

Summary: This paper introduces Lung performance-based optimization (LPO), a novel algorithm that draws inspiration from the efficient oxygen exchange in the lungs. Through experiments and comparisons with contemporary algorithms, LPO demonstrates its effectiveness in solving complex optimization problems and shows potential for a wide range of applications.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Integrated optimization of components' layout and structural topology with considering the interface stress constraint

Jingyu Hu, Yang Liu, Huixin Huang, Shutian Liu

Summary: In this study, a new topology optimization method is proposed for structures with embedded components, considering the tension/compression asymmetric interface stress constraint. The method optimizes the topology of the host structure and the layout of embedded components simultaneously, and a new interpolation model is developed to determine interface layers between the host structure and embedded components.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

The anisotropic graph neural network model with multiscale and nonlinear characteristic for turbulence simulation

Qiang Liu, Wei Zhu, Xiyu Jia, Feng Ma, Jun Wen, Yixiong Wu, Kuangqi Chen, Zhenhai Zhang, Shuang Wang

Summary: In this study, a multiscale and nonlinear turbulence characteristic extraction model using a graph neural network was designed. This model can directly compute turbulence data without resorting to simplified formulas. Experimental results demonstrate that the model has high computational performance in turbulence calculation.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Multi-temporal decomposition for elastoplastic ratcheting solids

Jacinto Ulloa, Geert Degrande, Jose E. Andrade, Stijn Francois

Summary: This paper presents a multi-temporal formulation for simulating elastoplastic solids under cyclic loading. The proper generalized decomposition (PGD) is leveraged to decompose the displacements into multiple time scales, separating the spatial and intra-cyclic dependence from the inter-cyclic variation, thereby reducing computational burden.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Automated translation and accelerated solving of differential equations on multiple GPU platforms

Utkarsh Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Prakitr Srisuma, Tim Gymnich, Adam R. Gerlach, Alan Edelman, George Barbastathis, Richard D. Braatz, Christopher Rackauckas

Summary: This article presents a high-performance vendor-agnostic method for massively parallel solving of ordinary and stochastic differential equations on GPUs. The method integrates with a popular differential equation solver library and achieves state-of-the-art performance compared to hand-optimized kernels.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)