4.7 Article

A multiscale extended finite element method for crack propagation

Journal

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2007.07.023

Keywords

multiscale strategy; crack propagation; X-FEM; homogenization; LATIN method; macroenrichment

Ask authors/readers for more resources

In this paper, we propose a multiscale strategy for crack propagation which enables one to use a refined mesh only in the crack's vicinity where it is required. Two techniques are used in synergy: a multiscale strategy based on a domain decomposition method to account for the crack's global and local effects efficiently, and a local enrichment technique (the X-FEM) to describe the geometry of the crack independently of the mesh. The focus of this study is the avoidance of meshing difficulties and the choice of an appropriate scale separation to make the strategy efficient. We show that the introduction of the crack's discontinuity both on the microscale and on the macroscale is essential for the numerical scalability of the domain decomposition method to remain unaffected by the presence of a crack. Thus, the convergence rate of the iterative solver is the same throughout the crack's propagation. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available