4.7 Article

The buckling of single-walled carbon nanotubes upon bending: The higher order gradient continuum and mesh-free method

Journal

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volume 197, Issue 33-40, Pages 3001-3013

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2008.02.003

Keywords

carbon nanotubes; bending; buckling; higher order gradient continuum; mesh-free method

Ask authors/readers for more resources

The bending buckling of single-walled carbon nanotubes (SWCNTs) is studied in the theoretical scheme of the higher order gradient continuum. The deformation of the underlying lattice vectors is approximated with an extended Cauchy-Born rule in which the effect of the second order deformation gradient is considered, and the continuum constitutive responses are determined by minimizing the energy of the representative cell. A mesh-free method is developed to implement the numerical modeling of SWCNTs, and their bending buckling behavior is numerically simulated with the developed method. The results are compared with those obtained with a full atomistic simulation, and it is revealed that the developed mesh-free method can accurately exhibit the bending deformation of SWCNTs. Different types of carbon nanotubes (CNTs) are studied, and the buckling mechanism is investigated. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Multidisciplinary

Modeling via peridynamics for large deformation and progressive fracture of hyperelastic materials

B. B. Yin, W. K. Sun, Yang Zhang, K. M. Liew

Summary: This study proposes a novel meshfree framework based on bond-based peridynamics (PD) using finite deformation theory to model the large deformation and progressive fracture of hyperelastic materials. The framework introduces an original bond strain and a numerical damping parameter to improve the solution accuracy and stability of explicit time integration. It outperforms grid-based methods in capturing complex crack features and has been successfully validated in various examples. The framework has wide compatibility with hyperelastic models and has potential applications in elastomer-hydrogel composites and soft tissues modeling.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Ecology

On The Flame Behavior during Cable Insulation Material Ignited by Fault Arc: A Flame Extracting and Noise Reduction Algorithm

Yalong Wang, Chaoying Li, Haidong Liu, Jin Lin, Shouxiang Lu, Kim Meow Liew

Summary: The electric fault arc, especially the series arc, causes numerous electrical fires. Previous studies have limitations in focusing on gaseous atmospheres instead of solid materials, which is not in line with the actual demand, and in restricting the studied external heat sources to cone heaters and flames, neglecting the electric arc. To overcome these limitations, an experimental platform was developed to investigate flame behavior during the ignition of cable insulation material by the fault arc. A flame-extracting and noise-reduction algorithm was proposed to process the high-speed camera's large number of photos. The main findings include the significant role of the appropriate size of the structuring element in filtering the flame region, the increase in mean flame area with system load growth, and the more prominent flame size and frequency in specific locations with increased system load. The in-depth understanding of flame behavior provided by this work will contribute to optimizing electric system design and disaster prevention.

FIRE-SWITZERLAND (2023)

Article Chemistry, Physical

Surface modification strategy for controlling wettability and ionic diffusion behaviors of calcium silicate hydrate

Gen Li, Arslan Akbar, Lu-Wen Zhang, F. Rosei, K. M. Liew

Summary: Solid substrates of cementitious composites in high salinity and humidity environments are covered by fluid water, which affects the wetting behavior of cement hydrates and chloride ingress phenomena. This study investigates the nanoscale wetting behaviors of calcium silicate hydrate (C-S-H) and proposes a surface modification strategy using fluoroalkylsilane (FAS) to control hydrophobicity. Molecular dynamic simulation reveals that FAS creates superhydrophobic surfaces, eliminating calcium leaching by hindering ionic interactions and blocking chloride adsorption and invasion.

APPLIED SURFACE SCIENCE (2023)

Article Mechanics

Modeling progressive failure and crack evolution in a randomly distributed fiber system via a coupled phase-field cohesive model

B. B. Yin, Arslan Akbar, Yang Zhang, K. M. Liew

Summary: This study presents a coupled phase-field cohesive modeling framework that can accurately capture the progressive failure and damage behaviors of multiphasic microstructures and multifiber systems. The framework includes novel aspects such as a newly developed scalar indicator, periodic boundary conditions, and characterization of various failure modes. Parametric studies show consistent results with experiments and reveal the effects of fiber distributions, fiber volume fractions, and boundary conditions on the mechanical behaviors of fiber-reinforced composites. The results demonstrate the potential of the framework in evaluating the mechanical performances of composite materials in engineering applications.

COMPOSITE STRUCTURES (2023)

Article Mechanics

Modeling of heating and cooling behaviors of laminated glass facades exposed to fire with three-dimensional flexibilities

D. A. Abdoh, Yang Zhang, A. S. Ademiloye, V. K. R. Kodur, K. M. Liew

Summary: In order to predict the heating and cooling behaviors of laminated glass facades exposed to fire, a precise and efficient computer model is developed. An efficient three-dimensional finite difference method (3DFDM) is proposed to reduce the computational requirements associated with simulating heat transfer in layered structures with a down-flowing water film. A unique computational algorithm for particle labeling is developed to capture the moving particles of the water film, which significantly reduces the computational effort.

COMPOSITE STRUCTURES (2023)

Article Construction & Building Technology

Exploring durability and environmental impact of cementitious composites modified by fluoroalkyl-silane based additive

Gen Li, Arslan Akbar, Lu-Wen Zhang, Federico Rosei, K. M. Liew

Summary: This article focuses on an original molecular pathway to predict the durability and analyze the environmental impact of fluoroalkyl-silane (FS) based additive modified cementitious composites in marine environment. By revealing the calcium leaching behaviors of cement composites through molecular simulation, the study evaluates the porosity and chloride diffusion coefficient to determine their lifespan. The results show that FS surface modification can eliminate decalcification, decrease porosity, and slow down chloride accumulation. The optimal mixing content of 0.762 wt % FS significantly reduces repair frequencies and diminishes CO2 emissions and non-renewable energy consumption by 52.33% and 31.07% respectively. This research provides atomic understanding for improving the durability of cement composites and proposes strategies to predict their service life and environmental impact.

CONSTRUCTION AND BUILDING MATERIALS (2023)

Article Materials Science, Multidisciplinary

Carbon supplementation and bioaugmentation to improve denitrifying woodchip bioreactor performance under cold conditions

Wei-Kang Sun, B. B. Yin, Lu-Wen Zhang, K. M. Liew

Summary: To develop better diagnosis and treatment techniques for cardiovascular diseases, such as aneurysms, it is urgent to have a deeper understanding of the biomechanical mechanisms and failure behaviors of blood vessels. This study proposes a novel virtual bar model for surrounding tissues and correlates the residual stress and loads from the surrounding tissues with the perivascular pressures of the blood vessels. Additionally, a meshfree framework is developed to model the deformation and rupture of blood vessels using the Fung-type hyperelasticity and the Casson's non-Newtonian fluid model. The study successfully captures the blood pressure-induced spontaneous ruptures of blood vessels.

JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS (2023)

Article Chemistry, Physical

Specific adsorption induced electric double layer on gallium-based liquid metal electrode

Xiongfei Gao, Lu-Wen Zhang, K. M. Liew

Summary: This study reveals the electric double layer (EDL) structure at the interface between gallium-based liquid metal (GBLM) electrode and aqueous electrolyte for the first time, using density functional theory (DFT) calculation and ab initio molecular dynamics (AIMD) simulation. The EDL structure originates from the specific adsorption of gallates on GBLM, forming an inner Helmholtz layer (IHL) and attracting a diffusion layer with opposite charges. The excess negative charge on GBLM surface interferes with the adsorbed gallates and amplifies the interface potential change across EDL. The proposed EDL structure contributes to a deeper understanding of the electrochemical processes occurring at the electrode-electrolyte interface in GBLM aqueous batteries.

APPLIED SURFACE SCIENCE (2023)

Article Mechanics

Multi-objective optimization of high performance concrete columns under compressive loading with potential applications for sustainable earthquake-resilient structures and infrastructures

A. O. Sojobi, K. M. Liew

Summary: High performance column composites are multifunctional composites designed to improve resilience of structures and infrastructures. They have been found attractive in earthquake-prone regions for their superior mechanical performance.

COMPOSITE STRUCTURES (2023)

Article Mechanics

Low-velocity impact and compression-after-impact behaviors of twill woven carbon fiber/glass fiber hybrid composite laminates with flame retardant epoxy resin

Z. X. Lei, Junwei Ma, W. K. Sun, B. B. Yin, K. M. Liew

Summary: Composite structures can experience significant residual strength reduction due to invisible damage caused by impacts, which can result in severe harm without warning. Incorporating fibers, such as carbon and glass fibers, into composite laminates can enhance their impact resistance and compressive strength. This study investigated the dynamic response and residual strength of laminates reinforced with twill woven carbon fiber, glass fiber, and carbon/glass fiber hybrid under low-velocity impact and compression-after-impact testing. The results showed that adding glass fibers altered the impact damage mode and improved the laminates' impact resistance and compressive strength. The study also characterized the damage morphologies and failure mechanisms of the laminates, providing valuable insights for their structural design and performance improvement.

COMPOSITE STRUCTURES (2023)

Article Engineering, Manufacturing

The hydraulic interface towards the anti-fatigue performance of fiber-calcium silicate hydrate composites under cyclic loading

G. Li, B. B. Yin, L. W. Zhang, K. M. Liew

Summary: Fibers effectively prevent the structural deterioration of cementitious composites under repeated loadings. The interface between fiber and hydraulic cement matrix has mysterious fatigue behavior. This work demonstrates by atomic modelling that fiber, pore water, and calcium silicate hydrate (C-S-H) create a dynamically balanced system, keeping the stability of cement matrix under cyclic loading.

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING (2023)

Article Engineering, Multidisciplinary

Modeling of hyperelastic polymer gels under blunt ballistic impact with three-dimensional flexibilities

B. B. Yin, W. K. Sun, Yang Zhang, K. M. Liew

Summary: Polymer gels can be effectively simulated using a three-dimensional meshfree framework based on bond-based peridynamics, which enables dynamic simulations with complex geometric configurations. The proposed method exhibits superior performance in modeling blunt impacts on polymer gels compared to finite element counterparts, and can be easily extended to penetration impact problems.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Engineering, Multidisciplinary

A hybrid polymer-water peridynamics model for ballistic penetration damage of soft materials

Jiasheng Huang, Lu-Wen Zhang, K. M. Liew

Summary: This work proposes a novel hybrid polymer-water model within the peridynamics (PD) framework to accurately clarify the complex damage process of soft materials subject to ballistic penetration. The superior effectiveness and applicability of the proposed model are demonstrated through compression, shear, and fracture tests. The proposed model offers a reasonable and practical representation of soft material from the perspective of a particle-based approach and enhances the potential applications of PD framework for simulating the large deformation and dynamic response of soft materials.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2023)

Article Green & Sustainable Science & Technology

Sustainable transformation of end-of-life wind turbine blades: Advancing clean energy solutions in civil engineering through recycling and upcycling

Weiwei Zhang, Hao Yu, Binbin Yin, Arslan Akbar, K. M. Liew

Summary: This review explores the recycling of end-of-life wind turbine blades (EoL-WTBs) and their potential applications in civil engineering. Mechanical, thermal, and chemical recycling methods are examined, highlighting the hierarchical valorization of EoL-WTBs recyclates in construction. However, challenges such as technical complexity, cost, market demand, and regulatory frameworks hinder widespread adoption. Standardization, efficient transportation systems, well-structured recycling supply chains, and economic feasibility analysis are recommended to address these issues.

JOURNAL OF CLEANER PRODUCTION (2023)

Article Engineering, Multidisciplinary

A coupled 3D thermo-mechanical peridynamic model for cracking analysis of homogeneous and heterogeneous materials

W. K. Sun, B. B. Yin, Arslan Akbar, V. K. R. Kodur, K. M. Liew

Summary: This paper proposes a variable timestep-strategy to accelerate the peridynamic modeling of thermomechanical cracking, and demonstrates its advantages in various aspects.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Probabilistic physics-guided transfer learning for material property prediction in extrusion deposition additive manufacturing

Akshay J. Thomas, Mateusz Jaszczuk, Eduardo Barocio, Gourab Ghosh, Ilias Bilionis, R. Byron Pipes

Summary: We propose a physics-guided transfer learning approach to predict the thermal conductivity of additively manufactured short-fiber reinforced polymers using micro-structural characteristics obtained from tensile tests. A Bayesian framework is developed to transfer the thermal conductivity properties across different extrusion deposition additive manufacturing systems. The experimental results demonstrate the effectiveness and reliability of our method in accounting for epistemic and aleatory uncertainties.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Discovering a reaction-diffusion model for Alzheimer's disease by combining PINNs with symbolic regression

Zhen Zhang, Zongren Zou, Ellen Kuhl, George Em Karniadakis

Summary: In this study, deep learning and artificial intelligence were used to discover a mathematical model for the progression of Alzheimer's disease. By analyzing longitudinal tau positron emission tomography data, a reaction-diffusion type partial differential equation for tau protein misfolding and spreading was discovered. The results showed different misfolding models for Alzheimer's and healthy control groups, indicating faster misfolding in Alzheimer's group. The study provides a foundation for early diagnosis and treatment of Alzheimer's disease and other misfolding-protein based neurodegenerative disorders using image-based technologies.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

A neural network-based enrichment of reproducing kernel approximation for modeling brittle fracture

Jonghyuk Baek, Jiun-Shyan Chen

Summary: This paper introduces an improved neural network-enhanced reproducing kernel particle method for modeling the localization of brittle fractures. By adding a neural network approximation to the background reproducing kernel approximation, the method allows for the automatic location and insertion of discontinuities in the function space, enhancing the modeling effectiveness. The proposed method uses an energy-based loss function for optimization and regularizes the approximation results through constraints on the spatial gradient of the parametric coordinates, ensuring convergence.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Stabilized mixed material point method for incompressible fluid flow

Bodhinanda Chandra, Ryota Hashimoto, Shinnosuke Matsumi, Ken Kamrin, Kenichi Soga

Summary: This paper proposes new and robust stabilization strategies for accurately modeling incompressible fluid flow problems in the material point method (MPM). The proposed approach adopts a monolithic displacement-pressure formulation and integrates two stabilization strategies to ensure stability. The effectiveness of the proposed method is validated through benchmark cases and real-world scenarios involving violent free-surface fluid motion.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

A unified analytical expression of the tangent stiffness matrix of holonomic constraints

Chao Peng, Alessandro Tasora, Dario Fusai, Dario Mangoni

Summary: This article discusses the importance of the tangent stiffness matrix of constraints in multibody systems and provides a general formulation based on quaternion parametrization. The article also presents the analytical expression of the tangent stiffness matrix derived through linearization. Examples demonstrate the positive effect of this additional stiffness term on static and eigenvalue analyses.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

On the detection of nonlinear normal mode-related isolated branches of periodic solutions for high-dimensional nonlinear mechanical systems with frictionless contact interfaces

Thibaut Vadcard, Fabrice Thouverez, Alain Batailly

Summary: This contribution presents a methodology for detecting isolated branches of periodic solutions to nonlinear mechanical equations. The method combines harmonic balance method-based solving procedure with the Melnikov energy principle. It is able to predict the location of isolated branches of solutions near families of autonomous periodic solutions. The relevance and accuracy of this methodology are demonstrated through academic and industrial applications.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Machine learning powered sketch aided design via topology optimization

Weisheng Zhang, Yue Wang, Sung-Kie Youn, Xu Guo

Summary: This study proposes a sketch-guided topology optimization approach based on machine learning, which incorporates computer sketches as constraint functions to improve the efficiency of computer-aided structural design models and meet the design intention and requirements of designers.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Reduced order isogeometric boundary element methods for CAD-integrated shape optimization in electromagnetic scattering

Leilei Chen, Zhongwang Wang, Haojie Lian, Yujing Ma, Zhuxuan Meng, Pei Li, Chensen Ding, Stephane P. A. Bordas

Summary: This paper presents a model order reduction method for electromagnetic boundary element analysis and extends it to computer-aided design integrated shape optimization of multi-frequency electromagnetic scattering problems. The proposed method utilizes a series expansion technique and the second-order Arnoldi procedure to reduce the order of original systems. It also employs the isogeometric boundary element method to ensure geometric exactness and avoid re-meshing during shape optimization. The Grey Wolf Optimization-Artificial Neural Network is used as a surrogate model for shape optimization, with radar cross section as the objective function.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Volume conservation issue within SPH models for long-time simulations of violent free-surface flows

C. Pilloton, P. N. Sun, X. Zhang, A. Colagrossi

Summary: This paper investigates the smoothed particle hydrodynamics (SPH) simulations of violent sloshing flows and discusses the impact of volume conservation errors on the simulation results. Different techniques are used to directly measure the particles' volumes and stabilization terms are introduced to control the errors. Experimental comparisons demonstrate the effectiveness of the numerical techniques.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Convolution finite element based digital image correlation for and strain measurements

Ye Lu, Weidong Zhu

Summary: This work presents a novel global digital image correlation (DIC) method based on a convolution finite element (C-FE) approximation. The C-FE based DIC provides highly smooth and accurate displacement and strain results with the same element size as the usual finite element (FE) based DIC. The proposed method's formulation and implementation, as well as the controlling parameters, have been discussed in detail. The C-FE method outperformed the FE method in all tested examples, demonstrating its potential for highly smooth, accurate, and robust DIC analysis.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)

Mojtaba Ghasemi, Mohsen Zare, Amir Zahedi, Pavel Trojovsky, Laith Abualigah, Eva Trojovska

Summary: This paper introduces Lung performance-based optimization (LPO), a novel algorithm that draws inspiration from the efficient oxygen exchange in the lungs. Through experiments and comparisons with contemporary algorithms, LPO demonstrates its effectiveness in solving complex optimization problems and shows potential for a wide range of applications.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Integrated optimization of components' layout and structural topology with considering the interface stress constraint

Jingyu Hu, Yang Liu, Huixin Huang, Shutian Liu

Summary: In this study, a new topology optimization method is proposed for structures with embedded components, considering the tension/compression asymmetric interface stress constraint. The method optimizes the topology of the host structure and the layout of embedded components simultaneously, and a new interpolation model is developed to determine interface layers between the host structure and embedded components.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

The anisotropic graph neural network model with multiscale and nonlinear characteristic for turbulence simulation

Qiang Liu, Wei Zhu, Xiyu Jia, Feng Ma, Jun Wen, Yixiong Wu, Kuangqi Chen, Zhenhai Zhang, Shuang Wang

Summary: In this study, a multiscale and nonlinear turbulence characteristic extraction model using a graph neural network was designed. This model can directly compute turbulence data without resorting to simplified formulas. Experimental results demonstrate that the model has high computational performance in turbulence calculation.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Multi-temporal decomposition for elastoplastic ratcheting solids

Jacinto Ulloa, Geert Degrande, Jose E. Andrade, Stijn Francois

Summary: This paper presents a multi-temporal formulation for simulating elastoplastic solids under cyclic loading. The proper generalized decomposition (PGD) is leveraged to decompose the displacements into multiple time scales, separating the spatial and intra-cyclic dependence from the inter-cyclic variation, thereby reducing computational burden.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)

Article Engineering, Multidisciplinary

Automated translation and accelerated solving of differential equations on multiple GPU platforms

Utkarsh Utkarsh, Valentin Churavy, Yingbo Ma, Tim Besard, Prakitr Srisuma, Tim Gymnich, Adam R. Gerlach, Alan Edelman, George Barbastathis, Richard D. Braatz, Christopher Rackauckas

Summary: This article presents a high-performance vendor-agnostic method for massively parallel solving of ordinary and stochastic differential equations on GPUs. The method integrates with a popular differential equation solver library and achieves state-of-the-art performance compared to hand-optimized kernels.

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2024)