4.7 Article

On traffic prediction for resource allocation: A Chebyshev bound based allocation scheme

Journal

COMPUTER COMMUNICATIONS
Volume 31, Issue 16, Pages 3741-3751

Publisher

ELSEVIER
DOI: 10.1016/j.comcom.2008.05.019

Keywords

FIR filters; Linear prediction; Chebyshev bound; Resource allocation

Funding

  1. Italian MIUR

Ask authors/readers for more resources

The paper presents a predictive approach to network resource allocation techniques. The rationale of this work is to use measurements to estimate future traffic behavior by prediction, and to use such an estimation to define the amount of future network resources that will be required by the considered traffic. In this framework, the paper presents the analysis and performance evaluation of classical and chaotic techniques for network traffic prediction. The performance parameters considered in the analysis are: the accuracy of predictors in capturing the actual behavior of traffic; the computational complexity for a realistic integration of such predictors into experimental testbeds; and the responsiveness with respect to traffic pattern variations. The analysis results show that the classical normalized linear mean square predictor achieves a satisfactory trade-off among the above mentioned metrics as it presents a medium level of complexity while achieving high performance in terms of prediction accuracy and responsiveness to network traffic changes. Then, using the normalized linear mean square predictor, we derive a bandwidth allocation strategy, named statistical delay bound (SDB), which guarantees a probabilistic bound on the delay experienced by packets traversing a network node. The paper presents the performance analysis of SDB showing that, in spite of the simplicity of the adopted predictive algorithm, the proposed measurement based technique allows to fulfill the project requirements and candidates for actual experimentation into prototypal routers which supports QoS mechanisms. (c) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available