4.7 Article

Energy partitioning within a micro-particle cluster due to impact with a rigid planar wall

Journal

COMPUTATIONAL MECHANICS
Volume 44, Issue 5, Pages 717-744

Publisher

SPRINGER
DOI: 10.1007/s00466-009-0404-5

Keywords

Particle impact; Granular solid; Dynamic compaction; Micro-particle cluster

Funding

  1. Mechanical Engineering Department, Louisiana State University
  2. US Air Force Office of Scientific Research [FA9550-06-1-0121]

Ask authors/readers for more resources

A combined finite and discrete element method is used to examine the energetics of a two-dimensional micro-particle cluster that impacts a rigid planar wall. The method combines conservation principles with an elastic-viscoplastic and friction constitutive theory to predict thermomechanical fields within particles resulting from both particle-wall and particle-particle contact. Emphasis is placed on characterizing the temporal and spatial partitioning of cluster energy with impact angle (0 degrees <= phi <= 80 degrees, where phi = 0 degrees corresponds to normal impact). Predictions for a close-packed cluster of well-resolved particles having an average initial radius and uniform speed of 50 mu m and 300 m/s indicate that particles adjacent to the wall experience the largest plastic and friction work. Friction significantly affects cluster kinetic energy, but minimally affects its elastic strain energy and plastic work. Local temperature rises in excess of 900 K are predicted for phi = 0 degrees, increasing to 4,400 K for approximately phi > 60 degrees, with most of the cluster mass (approximate to 98%) experiencing temperature rises less than 200 K due to plastic work. These predictions highlight the importance of friction work as a heating mechanism that may induce combustion of energetic clusters. Sensitivity of the cluster response to its initial packing configuration is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available