4.5 Article

Pareto-optimal analysis of Zn-coated Fe in the presence of dislocations using genetic algorithms

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 62, Issue -, Pages 266-271

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.commatsci.2012.05.002

Keywords

Fe-Zn system; Molecular dynamics; Artificial neural network; Genetic algorithm; Multi-objective optimization; Grain boundary; Dislocation

Ask authors/readers for more resources

To design a coating that will absorb maximum energy prior to failure with minimum deformation, the shearing process of polycrystalline Zn coated Fe is simulated in the presence of dislocations, using molecular dynamics. The results fed to an Evolutionary Neural Network generated the meta-models of objective functions required in the subsequent Pareto-optimization task using a Multi-objective Genetic Algorithm. Similar calculations conducted for single crystals, and also in the absence of dislocations, are compared and analyzed. (C) 2012 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Physics, Applied

Thermal vibration characteristics of armchair boron-nitride nanotubes

Anirban Chandra, Puneet Kumar Patra, Baidurya Bhattacharya

JOURNAL OF APPLIED PHYSICS (2015)

Article Physics, Applied

Phonon wave-packet scattering and energy dissipation dynamics in carbon nanotube oscillators

Matukumilli V. D. Prasad, Baidurya Bhattacharya

JOURNAL OF APPLIED PHYSICS (2015)

Article Chemistry, Physical

An ergodic configurational thermostat using selective control of higher order temperatures

Puneet Kumar Patra, Baidurya Bhattacharya

JOURNAL OF CHEMICAL PHYSICS (2015)

Article Mechanics

Progressive damage identification using dual extended Kalman filter

Subhamoy Sen, Baidurya Bhattacharya

ACTA MECHANICA (2016)

Article Chemistry, Multidisciplinary

Phonon Scattering Dynamics of Thermophoretic Motion in Carbon Nanotube Oscillators

Matukumilli V. D. Prasad, Baidurya Bhattacharya

NANO LETTERS (2016)

Article Construction & Building Technology

Online structural damage identification technique using constrained dual extended Kalman filter

Subhamoy Sen, Baidurya Bhattacharya

STRUCTURAL CONTROL & HEALTH MONITORING (2017)

Article Engineering, Civil

A non-iterative structural damage identification methodology using state space eigenstructure assignment

Subhamoy Sen, Baidurya Bhattacharya

STRUCTURE AND INFRASTRUCTURE ENGINEERING (2017)

Article Materials Science, Multidisciplinary

Thermomechanical buckling of boron nitride nanotubes using molecular dynamics

Anirban Chandra, Puneet Kumar Patra, Baidurya Bhattacharya

MATERIALS RESEARCH EXPRESS (2016)

Article Chemistry, Multidisciplinary

Phononic Origins of Friction in Carbon Nanotube Oscillators

Matukumilli V. D. Prasad, Baidurya Bhattacharya

NANO LETTERS (2017)

Article Engineering, Civil

Non-Gaussian parameter estimation using generalized polynomial chaos expansion with extended Kalman filtering

Subhamoy Sen, Baidurya Bhattacharya

STRUCTURAL SAFETY (2018)

Article Multidisciplinary Sciences

Zeroth Law investigation on the logarithmic thermostat

Puneet Kumar Patra, Baidurya Bhattacharya

SCIENTIFIC REPORTS (2018)

Article Engineering, Civil

A reliability based measure of structural robustness for coherent systems

Baidurya Bhattacharya

Summary: Progressive collapse is an important mode of system failure where a relatively minor local damage can lead to the collapse of a significant portion of a structure. Structural robustness is crucial in confining initial damages and ranking various structures in terms of their susceptibility to progressive collapse. A new robustness index for binary, coherent structural systems has been proposed to measure a structure's indifference to initial damage and has been demonstrated on an indeterminate truss structure.

STRUCTURAL SAFETY (2021)

Article Construction & Building Technology

Dynamic Response and Progressive Collapse of a Long-Span Suspension Bridge Induced by Suspender Loss

Hongfan Wang, Qian Chen, Anil K. Agrawal, Sherif El-Tawil, Baidurya Bhattacharya, Waider Wong

Summary: In this study, computational simulation is used to investigate the response of a long-span suspension bridge to sudden loss of suspenders. The results show that as the number of removed suspenders increases, the damage to the bridge also increases, with the most critical location for suspender removal being near the middle of the bridge. The study also finds that the bridge responses to the sequential loss and simultaneous loss of the same group of suspenders are almost identical, indicating the high robustness of suspension bridges like the prototype system under consideration.

JOURNAL OF STRUCTURAL ENGINEERING (2022)

Article Physics, Fluids & Plasmas

Equilibrium free-energy differences at different temperatures from a single set of nonequilibrium transitions

Puneet Kumar Patra, Baidurya Bhattacharya

PHYSICAL REVIEW E (2016)

Article Physics, Fluids & Plasmas

Heat pump without particle transport or external work on the medium achieved by differential thermostatting of the phase space

Puneet Kumar Patra, Baidurya Bhattacharya

PHYSICAL REVIEW E (2016)

Correction Materials Science, Multidisciplinary

Efficiency and accuracy of GPU-parallelized Fourier spectral methods for solving phase-field models (vol 228, ,112313, 2023)

A. D. Boccardo, M. Tong, S. B. Leen, D. Tourret, J. Segurado

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Deep learning interatomic potential for thermal and defect behaviour of aluminum nitride with quantum accuracy

Tao Li, Qing Hou, Jie-chao Cui, Jia-hui Yang, Ben Xu, Min Li, Jun Wang, Bao-qin Fu

Summary: This study investigates the thermal and defect properties of AlN using molecular dynamics simulation, and proposes a new method for selecting interatomic potentials, developing a new model. The developed model demonstrates high computational accuracy, providing an important tool for modeling thermal transport and defect evolution in AlN-based devices.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Illuminating the mechanical responses of amorphous boron nitride through deep learning: A molecular dynamics study

Shin-Pon Ju, Chao-Chuan Huang, Hsing-Yin Chen

Summary: Amorphous boron nitride (a-BN) is a promising ultralow-dielectric-constant material for interconnect isolation in integrated circuits. This study establishes a deep learning potential (DLP) for different forms of boron nitride and uses molecular dynamics simulations to investigate the mechanical behaviors of a-BN. The results reveal the structure-property relationships of a-BN, providing useful insights for integrating it in device applications.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Multiscale modeling of shape memory polymers foams nanocomposites

M. Salman, S. Schmauder

Summary: Shape memory polymer foams (SMPFs) are lightweight cellular materials that can recover their undeformed shape through external stimulation. Reinforcing the material with nano-clay filler improves its physical properties. Multiscale modeling techniques can be used to study the thermomechanical response of SMPFs and show good agreement with experimental results.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

DFT study on zeolites' intrinsic Brønsted acidity: The case of BEA

Laura Gueci, Francesco Ferrante, Marco Bertini, Chiara Nania, Dario Duca

Summary: This study investigates the acidity of 30 Bronsted sites in the beta-zeolite framework and compares three computational methods. The results show a wide range of deprotonation energy values, and the proposed best method provides accurate calculations.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Unveiling the CO2 adsorption capabilities of biphenylene network monolayers through DFT calculations

K. A. Lopes Lima, L. A. Ribeiro Junior

Summary: Advancements in nanomaterial synthesis and characterization have led to the discovery of new carbon allotropes, including biphenylene network (BPN). The study finds that BPN lattices with a single-atom vacancy exhibit higher CO2 adsorption energies than pristine BPN. Unlike other 2D carbon allotropes, BPN does not exhibit precise CO2 sensing and selectivity by altering its band structure configuration.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Ab-initio study of quaternary Heusler alloys LiAEFeSb (AE = Be, Mg, Ca, Sr or Ba) and prediction of half-metallicity in LiSrFeSb and LiBaFeSb

Jay Kumar Sharma, Arpita Dhamija, Anand Pal, Jagdish Kumar

Summary: In this study, the quaternary Heusler alloys LiAEFeSb were investigated for their crystal structure, electronic properties, and magnetic behavior. Density functional theory calculations revealed that LiSrFeSb and LiBaFeSb exhibit half-metallic band structure and 100% spin polarization, making them excellent choices for spintronic applications.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Graph neural networks for predicting structural stability of Cd- and Zn-doped-CsPbI3

Roman A. Eremin, Innokentiy S. Humonen, Alexey A. Kazakov, Vladimir D. Lazarev, Anatoly P. Pushkarev, Semen A. Budennyy

Summary: Computational modeling of disordered crystal structures is essential for studying composition-structure-property relations. In this work, the effects of Cd and Zn substitutions on the structural stability of CsPbI3 were investigated using DFT calculations and GNN models. The study achieved accurate energy predictions for structures with high substitution contents, and the impact of data subsampling on prediction quality was comprehensively studied. Transfer learning routines were also tested, providing new perspectives for data-driven research of disordered materials.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Insight into effect of high pressure on the structural, electronic, and optical properties of KH2PO4

Zhixin Sun, Hang Dong, Yaohui Yin, Ai Wang, Zhen Fan, Guangyong Jin, Chao Xin

Summary: In this study, the crystal structure, electronic structure, and optical properties of KH2PO4: KDP crystals under different pressures were investigated using the generalized gradient approximate. It was found that high pressure caused a phase transition in KDP and greatly increased the band gap. The results suggest that high pressure enhances the compactness of KDP and improves the laser damage threshold.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Phenomenon of anti-driving force during grain boundary migration

Tingting Yu

Summary: This study presents atomistic simulations revealing that an increase in driving force may result in slower grain boundary movement and switches in the mode of grain boundary shear coupling migration. Shear coupling behavior is found to effectively alleviate stress and holds potential for stress relaxation and microstructure manipulation in materials.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

The electronic properties of C2N/antimonene heterostructure regulated by the horizontal and vertical strain, external electric field and interlayer twist

Y. Zhang, X. Q. Deng, Q. Jing, Z. S. Zhang

Summary: The electronic properties of C2N/antimonene van der Waals heterostructure are investigated using density functional theory. The results show that by applying horizontal strain, vertical strain, electric field, and interlayer twist, the electronic structure can be adjusted. Additionally, the band alignment and energy states of the heterostructure can be significantly changed by applying vertical strain on the twisted structure. These findings are important for controlling the electronic properties of heterostructures.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Functionalized carbophenes as high-capacity versatile gas adsorbents: An ab initio study

Chad E. Junkermeier, Evan Larmand, Jean-Charles Morais, Jedediah Kobebel, Kat Lavarez, R. Martin Adra, Jirui Yang, Valeria Aparicio Diaz, Ricardo Paupitz, George Psofogiannakis

Summary: This study investigates the adsorption properties of carbon dioxide (CO2), methane (CH4), and dihydrogen (H2) in carbophenes functionalized with different groups. The results show that carbophenes can be promising adsorbents for these gases, with high adsorption energies and low desorption temperatures. The design and combination of functional groups can further enhance their adsorption performance.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Insights from symmetry: Improving machine-learned models for grain boundary segregation

Y. Borges, L. Huber, H. Zapolsky, R. Patte, G. Demange

Summary: Grain boundary structure is closely related to solute atom segregation, and machine learning can predict the segregation energy density. The study provides a fresh perspective on the relationship between grain boundary structure and segregation properties.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Phase-field dislocation dynamics simulations of temperature-dependent glide mechanisms in niobium

M. R. Jones, L. T. W. Fey, I. J. Beyerlein

Summary: In this work, a three-dimensional ab-initio informed phase-field-dislocation dynamics model combined with Langevin dynamics is used to investigate glide mechanisms of edge and screw dislocations in Nb at finite temperatures. It is found that the screw dislocation changes its mode of glide at two distinct temperatures, which coincides with the thermal insensitivity and athermal behavior of Nb yield strengths.

COMPUTATIONAL MATERIALS SCIENCE (2024)

Article Materials Science, Multidisciplinary

Spline-based neural network interatomic potentials: Blending classical and machine learning models

Joshua A. Vita, Dallas R. Trinkle

Summary: This study introduces a new machine learning model framework that combines the simplicity of spline-based potentials with the flexibility of neural network architectures. The simplified version of the neural network potential can efficiently describe complex datasets and explore the boundary between classical and machine learning models. Using spline filters for encoding atomic environments results in interpretable embedding layers that can incorporate expected physical behaviors and improve interpretability through neural network modifications.

COMPUTATIONAL MATERIALS SCIENCE (2024)