4.7 Article Proceedings Paper

Effect of variation in fibre volume fraction on modes I and II delamination behaviour of 5HS woven composites manufactured by RTM

Journal

COMPOSITES SCIENCE AND TECHNOLOGY
Volume 69, Issue 14, Pages 2368-2375

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2009.02.008

Keywords

Textile composites; Delamination; Fracture toughness; Resin transfer moulding (RTM); Fibre volume fraction (FVF)

Ask authors/readers for more resources

Composites produced by resin infusion techniques will inevitably suffer from variation in resin distribution due to imprecise fibre placement and distortion of the preform during mould closure and infusion. This paper describes an investigation into the effect of variations in fibre volume fraction (FVF) on mode I and mode II delamination behaviour for 5 harness satin (5HS) woven carbon-fibre/epoxy resin composites manufactured by resin transfer moulding (RTM). Additionally, the effect of satin face tow orientation on interlaminar toughness was investigated. In mode I, it was found that toughness increased with increasing FVF and that a strong correlation between fracture surface damage and measured interlaminar fracture toughness was observed. In mode II, measured toughness values were higher than expected and tests were repeated using a mixed-mode rig with 5% mode I. It was found that fracture toughness measurements in pure mode II are significantly affected by friction or mechanical interlocking between the delamination surfaces. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Composites

Herringbone-Bouligand CFRP structures: A new tailorable damage-tolerant solution for damage containment and reduced delaminations

Lorenzo Mencattelli, Silvestre T. Pinho

COMPOSITES SCIENCE AND TECHNOLOGY (2020)

Article Mechanics

On the role of dynamic stress concentrations and fracture mechanics in the longitudinal tensile failure of fibre-reinforced composites

Gianmaria Bullegas, Jorge Moledo Lamela, Soraia Pimenta, Silvestre Taveira Pinho

ENGINEERING FRACTURE MECHANICS (2020)

Article Engineering, Multidisciplinary

A novel formulation for the explicit discretisation of evolving boundaries with application to topology optimisation

R. O. S. S. da Costa, S. T. Pinho

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING (2020)

Article Materials Science, Multidisciplinary

Bio-inspired armour: CFRP with scales for perforation resistance

R. Hasa, S. T. Pinho

MATERIALS LETTERS (2020)

Review Materials Science, Composites

Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites

Janos Plocher, Lorenzo Mencattelli, Federico Narducci, Silvestre Pinho

Summary: Recent studies have shown that replicating structures and toughening mechanisms found in flora and fauna can help create high-performance fiber-reinforced polymers with enhanced toughness and damage tolerance. Understanding the design principles and mechanisms is crucial in manufacturing damage-tolerant bio-inspired composites.

COMPOSITES SCIENCE AND TECHNOLOGY (2021)

Article Engineering, Manufacturing

The influence of temperature and moisture on the mode I fracture toughness and associated fracture morphology of a highly toughened aerospace CFRP

T. J. Katafiasz, E. S. Greenhalgh, G. Allegri, S. T. Pinho, P. Robinson

Summary: The study found that the mode I propagation fracture toughness tested at wet/90 degrees C showed a 176% increase compared to the dry/19 degrees C specimens, due to enhanced plastic deformation of the interlayers and more prominent fibre bridging. However, moisture-saturated coupons tested at -55 degrees C suffered a 57% reduction of mode I fracture toughness compared to those under dry/19 degrees C conditions, which is attributed to the dis-bond and consequent plucking of the thermoplastic particles from the surrounding matrix. This suggests that wet/cold conditions may represent the worst-case scenario for the interlaminar fracture performance of composite systems toughened with thermoplastic interleaves.

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING (2021)

Article Engineering, Manufacturing

Hygrothermal effects on the translaminar fracture toughness of a highly toughened aerospace CFRP: Experimental characterisation and model prediction

B. Yu, T. J. Katafiasz, S. Nguyen, G. Allegri, J. Finlayson, E. S. Greenhalgh, S. T. Pinho, S. Pimenta

Summary: The research shows that the translaminar fracture toughness of aerospace composites is influenced by different temperature and moisture conditions, especially with a more significant increase under wet conditions. A model has been developed to predict the effects of humidity and temperature on fracture toughness, aiding in a better understanding of toughening mechanisms in composite materials.

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING (2021)

Article Multidisciplinary Sciences

Characterizing and predicting the relationship between translaminar fracture toughness and pull-out length distributions under distinct temperatures

B. Yu, T. J. Katafiasz, S. Nguyen, G. Allegri, J. Finlayson, E. S. Greenhalgh, S. T. Pinho, S. Pimenta

Summary: This study aims to quantify and model the statistical distribution of fibre pull-out lengths formed on the translaminar fracture surface of composites for the first time. X-ray computed tomography is used to measure the extent of fibre pull-out, and the relationship between pull-out length distributions, micromechanical properties, and the translaminar fracture toughness is established.

PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES (2023)

Article Engineering, Multidisciplinary

A novel bio-inspired microstructure for improved compressive performance of multidirectional CFRP laminates

Torquato Garulli, Tomas J. Katafiasz, Emile S. Greenhalgh, Silvestre T. Pinho

Summary: In this work, a bio-inspired microstructural concept is designed and manufactured to enhance the longitudinal compressive performance of multidirectional carbon fiber reinforced polymer (CFRP) laminates. Taking inspiration from layered materials found in nature, such as the anchoring spicula of the deep-sea glass sponge Monoraphis chuni, the authors created various design concepts and developed a strategy to reproduce the characteristic alternation of stiff and soft regions observed in the natural material. The proposed microstructure showed significant improvements in failure load and ligament specific stress at failure compared to a baseline laminate, suggesting its potential for lightweight structure design subjected to compression loading.

COMPOSITES PART B-ENGINEERING (2023)

Article Engineering, Multidisciplinary

Bio-inspired interleaved hybrids: Novel solutions for improving the high-velocity impact response of carbon fibre-reinforced polymers (CFRP)

M. Erfan Kazemi, Victor Medeau, Emile Greenhalgh, Paul Robinson, James Finlayson, Silvestre T. Pinho

Summary: This study proposes a novel design methodology using bio-inspired and interleaved layups to develop hybrid carbon fibre-reinforced polymer composite structures for improved high-velocity impact performance. The results show that the new design significantly improves energy dissipation and activates additional failure mechanisms compared to traditional layups.

COMPOSITES PART B-ENGINEERING (2023)

Article Engineering, Multidisciplinary

A novel profiling concept leading to a significant increase in the mechanical performance of metal to composite adhesive joints

Adam D. Whitehouse, Victor Medeau, Lorenzo Mencattelli, Bamber Blackman, Silvestre T. Pinho

Summary: This study develops a novel profiling concept to improve the mechanical performance of adhesive joints between metallic adherends and composite substrates. The experiments show that profiling the edge of the metallic adherend can increase the peak load by at least 27% and improve the stability of failure. Further experiments demonstrate that increasing the profile parameters can achieve significant mechanical performance gains. Acoustic emission monitoring data shows that profiling results in failure initiation occurring at higher loads, suggesting better stress distributions and lower peak stresses. Fracture surface analysis reveals that profiling deflects the translaminar fracture path and enhances damage tolerance through a debonding mechanism at the profile tips.

COMPOSITES PART B-ENGINEERING (2023)

Article Materials Science, Composites

Novel zone-based hybrid laminate structures for high-velocity impact (HVI) in carbon fibre-reinforced polymer (CFRP) composites

M. Erfan Kazemi, Victor Medeau, Lorenzo Mencattelli, Emile Greenhalgh, Paul Robinson, James Finlayson, Silvestre T. Pinho

Summary: We introduce novel zone-based hybrid laminate concepts to enhance the high-velocity impact (HVI) response of baseline carbon fibre-reinforced polymer (CFRP) composites. By keeping approximately 80% of the baseline CFRP mass in the hybrid concepts, similar areal weights and substantial in-plane mechanical properties are maintained. Three zones are identified along the laminate thickness, and tailored materials are incorporated to improve the HVI response. Various materials, including carbon (thin- and thick-plies), glass, Zylon, ultra-high molecular weight polyethylene (UHMWPE), shape memory alloy/carbon fabric, and ceramic, alumina, and titanium sheets, are studied. All laminate concepts have comparable areal weights for meaningful comparison. Experimental results demonstrate up to 95% improvement in energy dissipation compared to the baseline quasi-isotropic (QI) CFRP configuration.

COMPOSITES SCIENCE AND TECHNOLOGY (2023)

Article Engineering, Manufacturing

Estimation of axial compressive strength of unidirectional carbon fiber-reinforced plastic considering the variability of fiber misalignment

Masahito Ueda, Yuki Suzuki, Silvestre T. Pinho

Summary: The analytical method for calculating the axial compressive stress-strain relationship of a unidirectional carbon fiber-reinforced plastic (UD CFRP) was presented, taking into account the variability of the fiber misalignment angle. It was found that the load-bearing capabilities of different fiber groups decreased significantly with greater misalignment angles. Fibers with a misalignment angle of 0.5 degrees showed a large load drop after reaching their maximum loading, leading to ultimate failure.

COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING (2023)

Article Mechanics

A floating connector element formulation for multi-level modelling of composite structures

E. S. Kocaman, B. Y. Chen, S. T. Pinho

COMPOSITE STRUCTURES (2020)

Article Materials Science, Composites

A novel pultrusion method and axial compression behavior of 3-D braiding-winding-pultrusion composite tubes at different temperatures

Xi Liu, Wei Shen, Jincun Fu, Toshiaki Natsuki, Lvtao Zhu

Summary: The 3-D carbon fiber reinforced resin matrix composite tubes were designed and formed using a novel braiding-winding-pultrusion processing technique. The effects of temperature environments on the mechanical responses and damage behaviors of the composite tubes were investigated, and it was found that the structural design of the tubes directly affects their axial bearing capacity.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Self-healing and in-situ real-time damage-reporting fiber-reinforced composite

Weihao Yuan, Ziyang Zhang, Yueshan Li, Yudong Huang, Zhengxiang Zhong, Zhen Hu

Summary: In this study, the simultaneous self-healing of matrix and interface damage of fiber-reinforced composites was achieved by integrating extrinsic self-healing based on microcapsules and internal self-healing based on coordination interaction. The high exothermic action of epoxy resin and mercaptan repair agent in the self-healing process was observed using infrared thermal imaging technology for in-situ and real-time damage detection.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Ultra-thin composites membrane for deployable structures: XCT driven characterization and FE modeling of folding structure

Israr Ud Din, Adnan Ahmed, Farah Tarek, Wesley Cantwell, Kamran A. Khan

Summary: In this study, a finite element model driven by XCT was developed to simulate the folding characteristics of origami structures, and the results showed good agreement with experimental data. The study demonstrates the potential application of XCT-driven FE modeling in simulating foldable structures.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Optically transparent and high-strength glass-fabric reinforced composite

Yishan Yang, Yukang Lai, Song Zhao, Hongguang Chen, Renshu Li, Yongjiang Wang

Summary: This study reports the synthesis of a new transparent fiber reinforced polymer material (tGFRP) with high transparency and superior mechanical properties by controlling the refractive index of epoxy resin and using a novel processing technique.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Acoustic emission-based failure load prediction for plain woven laminates under quasi-static indentation

Yuhang Liu, Kai Huang, Junfeng Ding, Shangyang Yu, Zhixing Li, Li Zhang, Licheng Guo

Summary: This study proposes a method for accurately predicting the penetration failure load of composites using acoustic emission (AE) data. The method includes a cyclic loading test schedule and an extrapolation method based on uncertainty. The results show that this method can accurately predict the failure load when LR equals 1.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Design and preparation of ternary polymer nanocomposites for high energy density film capacitors

Jinxia Cai, Bing Xie, Yunliang Jiang, Jinshan Lu, Zeyu Li, Pu Mao, Mohsin Ali Marwat, Haibo Zhang

Summary: This research aims to develop ternary nanocomposites composed of polycarbonate, Al2O3 nanoparticles, and BaTiO3 nanowires for capacitive energy-storage. By optimizing the capacitor materials, the discharge energy density and efficiency have been improved, and the superiority of the ternary polymer nanocomposites for dielectric energy-storage has been validated through finite element analysis.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

A multi-fidelity data-driven model for highly accurate and computationally efficient modeling of short fiber composites

Hon Lam Cheung, Mohsen Mirkhalaf

Summary: The aim of this study is to develop physics-based models and establish a structure-property relationship for short fiber composites. High-fidelity full-field simulations are computationally expensive and time-consuming, so the use of artificial neural networks and transfer learning technique is proposed to solve this issue and improve modeling accuracy and efficiency.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Tailoring the mechanical and combustion performance of B/HTPB composite solid fuel with covalent interfaces

Yue Jiang, Juyoung Leem, Ashley M. Robinson, Shuai Wu, Andy H. Huynh, Dongwon Ka, Ruike Renee Zhao, Yan Xia, Xiaolin Zheng

Summary: The effect of interface engineering on the combustion and mechanical performance of high-loading B/HTPB composites was investigated in this study. It was found that both covalently bonded and nonpolar/nonpolar interfaces effectively reduced the aggregation of B particles, promoting combustion efficiency and burning rate, and enhancing the mechanical properties of the composites.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Analysis of interfacial characteristics in polymer nanocomposites via visual particle recognition methodology and micromechanical predictive models

R. Mohsenzadeh, B. H. Soudmand, A. H. Najafi, M. Fattahi, D. P. Uyen

Summary: This study examines the morphological features of nano-zeolite nanoparticles incorporated into ultra-high molecular weight polyethylene nanocomposites. The dispersion of nanoparticles within the polymer matrix was improved following nano-zeolite incorporation. The size and distribution of nanoparticles were determined through tailored histograms, and the effective elastic moduli of nanocomposites were calculated, considering interfacial effects.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

On the post-impact fatigue behavior and theoretical life prediction of CF/ PEEK-titanium hybrid laminates using an energy dissipation approach

Chunming Ji, Jiqiang Hu, Rene Alderliesten, Jinchuan Yang, Zhengong Zhou, Yuguo Sun, Bing Wang

Summary: This paper investigates the effect of impact damage on the fatigue behavior of CF/PEEK-titanium hybrid laminates. A fatigue life model is proposed to predict the S-N curves of the laminates based on energy dissipation approach. The energy dissipation behavior of the laminates under different experimental conditions is analyzed through post-impact fatigue tests, and the correlation between impact damage and fatigue dissipation energy is determined. The validity of the proposed model is verified through fatigue tests under different stress ratios and impact energy levels.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Comparative study of different bonding interactions on the interfacial adhesion and mechanical properties of MXene-decorated carbon fiber/ epoxy resin composites

Shaokai Hu, Ping Han, Chao Meng, Ying Yu, Shaolong Han, Haoyu Wang, Gang Wei, Zheng Gu

Summary: This study decorates MXene on the surface of carbon fiber using different bonding interactions to improve the interface adhesion and mechanical properties of carbon fiber-reinforced polymers composites (CFRPs). The results demonstrate that CFRPs reinforced by CF-c-MXene show the optimal properties, with significant improvements in impact strength and interfacial shear strength compared to the unsized carbon fiber-reinforced composites.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Interfacial reinforcement of carbon fiber composites through a chlorinated aramid nanofiber interphase

Steven U. Mamolo, Henry A. Sodano

Summary: This study demonstrates that chlorination of ANFs and oxygen plasma treatment of carbon fibers enables the formation of a chlorinated ANF (Cl-ANF) interphase, resulting in a 79.8% increase in interfacial shear strength and a 33.7% increase in short beam strength in CFRP composites. This method provides a rapid and reliable process to improve the mechanical properties of CFRPs without degrading the tensile strength of the carbon fibers.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Prediction of mechanical properties of 3D tubular braided composites at different temperatures using a multi-scale modeling framework based on micro-CT

Yuyang Zhang, Huimin Li, Xin Liu, Yanhong Chen, Chengwei Qin, Daining Fang

Summary: Establishing a prediction model for the mechanical properties of three-dimensional tubular braided composites at different temperatures is of great significance. This study adopted a multi-scale modeling framework based on micro-computed tomography to consider the characteristics of the real yarn cross section and establish a realistic trans-scale finite element model for the composites. The predicted mechanical properties were found to be significantly affected by temperature.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

Hybridization of cellulose nanocrystals modified ZnO nanoparticles with bio-based hyperbranched waterborne polyurethane sizing agent for superior UV resistance and interfacial properties of CF/PA6 composites

Shengtao Dai, Fei Yan, Jiaming Guo, Huiru Hu, Yu Liu, Liu Liu, Yuhui Ao

Summary: This study successfully synthesized a hyperbranched waterborne polyurethane sizing agent and cellulose nanocrystal modified zinc oxide nanohybrids to improve the interface and properties of carbon fiber reinforced composites. The modified composites exhibited remarkable enhancements in mechanical properties and exceptional UV resistance.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)

Article Materials Science, Composites

A simple rheological method for the experimental assessment of the fiber percolation threshold in short fiber biocomposites

Libera Vitiello, Martina Salzano de Luna, Veronica Ambrogi, Giovanni Filippone

Summary: The identification of the percolation threshold in short fiber composites is crucial for assessing material properties and biodegradation speed. In this study, an original rheological approach was used to estimate the percolation threshold of hemp and kenaf-based composites, which showed good agreement with conventional dielectric spectroscopy analyses.

COMPOSITES SCIENCE AND TECHNOLOGY (2024)