4.7 Article

Uniaxial tension and compression characterization of hybrid CNS-glass fiber-epoxy composites

Journal

COMPOSITE STRUCTURES
Volume 95, Issue -, Pages 337-345

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2012.07.013

Keywords

Carbon nanostructure; Nanotubes; Hybrid; Tension; Compression; Glass fibers

Ask authors/readers for more resources

In this work, unidirectional multi-scale, carbon nanostructure (CNS)-glass fiber-epoxy, composites were manufactured using a novel in-line continuous production scalable chemical vapor deposition based CNS manufacturing process. The processing parameters peculiar to the growth system, specifically growth chamber temperature, catalyst concentration and line speed, were varied to observe the effect on the CNS growth and parent filament degradation. Unidirectional tension and compression tests were conducted to measure the strength and modulus in the filament direction and failure mechanisms of the hybrid materials identified. Based on the results of tensile tests, gains in tensile strength and tensile modulus are achieved through a uniform coverage of short CNS. The greatest increases in CNS-enhanced composite compressive strength can be achieved through the combination of low weight percent CNS on the fiber and minimal parent filament environmental degradation. For stiffness governed applications, these CNS-enhanced composites may not provide the ideal solution. However, applications which demand significant deformation prior to failure or damage tolerance can benefit from the properties afforded by these CNS-fiber-epoxy composites. (c) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available