4.7 Article

The high-temperature autoignition of biodiesels and biodiesel components

Journal

COMBUSTION AND FLAME
Volume 161, Issue 12, Pages 3014-3021

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2014.06.009

Keywords

Shock tube; Ignition; Biodiesel

Funding

  1. National Science Foundation [CBET-1032453]

Ask authors/readers for more resources

Ignition delay time measurements are reported for two reference fatty-acid methyl ester biodiesel fuels, derived from methanol-based transesterification of soybean oil and animal fats, and four primary constituents of all methyl ester biodiesels: methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate. Experiments were carried out behind reflected shock waves for gaseous fuel/air mixtures at temperatures ranging from 900 to 1350 K and at pressures around 10 and 20 atm. Ignition delay times were determined by monitoring pressure and ultraviolet chemiluminescence from electronically-excited OH radicals. The results show similarity in ignition delay times for all methyl ester fuels considered, irrespective of the variations in organic structure, at the high-temperature conditions studied and also similarity in high-temperature ignition delay times for methyl esters and n-alkanes. Comparisons with recent kinetic model efforts are encouraging, showing deviations of at most a factor of two and in many cases significantly less. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available