4.7 Article

Pyrophoricity of nascent and passivated aluminum particles at nano-scales

Journal

COMBUSTION AND FLAME
Volume 160, Issue 9, Pages 1870-1875

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2013.03.031

Keywords

Aluminum; Nano-particle; Pyrophoricity; Oxidation; Ignition

Funding

  1. Air Force Office of Scientific Research [FA-9550-11-1-0002]

Ask authors/readers for more resources

Pyrophoricity of nascent and passivated nano-aluminum particles in air is studied theoretically using energy balance analyses. The work incorporates size-dependence of physicochemical properties of particles at nano-scales, and considers free-molecular and radiation heat exchange with the surrounding environment. The heterogeneous oxidation process is modeled using the Mott-Cabrera mechanism. Nascent aluminum particles with diameters lower than 32 nm are predicted to be pyrophoric. The critical diameter for particles passivated with 0.3-nm thick oxide layer is calculated as 3.8 nm. Particles with oxide layers thicker than 0.3 nm are found to be non-pyrophoric. The sensitivity analysis suggests that the model results are significantly affected by the choice of physicochemical properties, polymorphic state of the oxide layer, parameters of the Mott-Cabrera oxidation kinetics, and heat-transfer correlation. The critical particle size increases by 40%, when bulk material properties calculated at room temperature are used and the oxide layer is assumed to be in a crystalline form. It decreases by 43%, when free-molecular effects are neglected. (c) 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available