4.7 Article

Acoustic and Large Eddy Simulation studies of azimuthal modes in annular combustion chambers

Journal

COMBUSTION AND FLAME
Volume 159, Issue 11, Pages 3398-3413

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2012.06.016

Keywords

Acoustics; Large Eddy Simulation; Azimuthal modes; Annular combustion chambers

Funding

  1. Office of Science of the US Department of Energy [DE-AC02-06CH11357]
  2. ANRT/CIFRE
  3. ANR [SIMTUR ANR-07-CIS7-008]

Ask authors/readers for more resources

The objectives of this paper are the description of azimuthal instability modes found in annular combustion chambers using two numerical tools: (1) Large Eddy Simulation (LES) methods and (2) acoustic solvers. These strong combustion instabilities are difficult to study experimentally and the present study is based on a LES of a full aeronautical combustion chamber. The LES exhibits a self-excited oscillation at the frequency of the first azimuthal eigenmode. The mesh independence of the LES is verified before analysing the nature of this mode using various indicators over more than 100 cycles: the mode is mostly a pure standing mode but it transitions from time to time to a turning mode because of turbulent fluctuations, confirming experimental observations and theoretical results. The correlation between pressure and heat release fluctuations (Rayleigh criterion) is not verified locally but it is satisfied when pressure and heat release are averaged over sectors. LES is also used to check modes predicted by an acoustic Helmholtz solver where the flow is frozen and flames are modelled using a Flame Transfer Function (FTF) as done in most present tools. The results in terms of mode structure compare well confirming that the mode appearing in the LES is the first azimuthal mode of the chamber. Moreover, the acoustic solver provides stability maps suggesting that a reduction of the time delay of the FTF would be enough to stabilise the mode. This is confirmed with LES by increasing the flame speed and verifying that this modification leads to a damped mode in a few cycles. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available