4.7 Article

The effect of PLGA-based hydrogel scaffold for improving the drug maximum-tolerated dose for in situ osteosarcoma treatment

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 172, Issue -, Pages 387-394

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2018.08.048

Keywords

Injectable hydrogel; Maximum tolerated dose; Localized drug delivery; Cancer therapy

Funding

  1. National Natural Science Foundation of China [NSFC 51773199, 51520105004]
  2. Scientific Development Program of Jilin Province [20170520126JH]

Ask authors/readers for more resources

Although hydrogel-based therapeutic agents have shown great potential for localized cancer treatments, the maximum tolerated dose (MTD) of these methods remains uncertain. To confirm this, doxorubicin (DOX) loaded PLGA-PEG-PLGA hydrogel was employed to investigate the MTD of DOX for localized osteosarcoma treatment. This hydrogel showed good injectable and biodegradable properties in vivo. And the drug remaining time was also obviously prolonged in the tumor site. Different doses of DOX (5.0, 15, 30 mg/kg) with/without hydrogel were adopted to the treatment of tumor-bearing mice. Despite both localized administrations of 5.0 mg/kg DOX showing no obvious systemic toxicity, this dose failed to control the persistent growth of tumors or prolong the survival time in comparison with the control groups. Localized administration of 30 mg/kg DOX showed a high efficacy for suppressing tumor growth, but exhibited obvious body weight losing at the same time. Correspondingly, the DOX-loaded hydrogel with the dose of 15 mg/kg achieved significantly improved antitumor efficacy and prolonged mean survival time compared with both the free DOX (15 mg/kg) and other control groups. Furthermore, during the whole therapeutic process, the mice showed no obvious body weight loss, major organs damage or death in this group. The MTD of DOX-loaded agent based on the PLGA-PEG-PLGA hydrogel gave a 2-fold increase compared to the MTD of free DOX (7.5 mg/kg, intravenous injection) for the mouse without significant systemic toxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Medicine, Research & Experimental

Biomechanical comparison of xenogeneic bone material treated with different methods

Wei Feng, Dongsong Li, Junting Zang, Li Fu

XENOTRANSPLANTATION (2017)

Article Medicine, Research & Experimental

Proliferative myositis in the right brachioradialis: A case report

Na Wei, Wei-Jie Xu, Dong Dong, Yu-Bao Gong

EXPERIMENTAL AND THERAPEUTIC MEDICINE (2017)

Article Orthopedics

Intracapsular cuneiform osteotomy compared with in-situ pinning for the management of slipped capital femoral epiphysis

Junting Zang, Katsufumi Uchiyama, Mitsutoshi Moriya, Zhengwei Li, Kensuke Fukushima, Takeaki Yamamoto, Jianguo Liu, Wei Feng, Naonobu Takahira, Masashi Takaso

JOURNAL OF PEDIATRIC ORTHOPAEDICS-PART B (2018)

Article Orthopedics

Long-term clinical and radiographic results of the cementless Spotorno stem in Japanese patients: A more than 15-year follow-up

Junting Zang, Katsufumi Uchiyama, Mitsutoshi Moriya, Zhengwei Li, Kensuke Fukushima, Takeaki Yamamoto, Naonobu Takahira, Masashi Takaso, Jianguo Liu, Wei Feng

JOURNAL OF ORTHOPAEDIC SURGERY (2018)

Article Medicine, Research & Experimental

Multifocal osteonecrosis affecting all four limbs in systemic lupus erythematosus: A case report

Siqiao Sun, Qi Wang, Yubao Gong, Xin Qi, Jianguo Liu

EXPERIMENTAL AND THERAPEUTIC MEDICINE (2019)

Article Orthopedics

Long-term outcomes of Wagner self-locking stem with bone allograft for Paprosky type II and III bone defects in revision total hip arthroplasty: A mean 15.7-year follow-up

Junting Zang, Katsufumi Uchiyama, Mitsutoshi Moriya, Kensuke Fukushima, Naonobu Takahira, Masashi Takaso

JOURNAL OF ORTHOPAEDIC SURGERY (2019)

Article Endocrinology & Metabolism

Mangiferin Alleviates Renal Interstitial Fibrosis in Streptozotocin-Induced Diabetic Mice through Regulating the PTEN/PI3K/Akt Signaling Pathway

Yanyan Song, Wei Liu, Ke Tang, Junting Zang, Dong Li, Hang Gao

JOURNAL OF DIABETES RESEARCH (2020)

Article Biotechnology & Applied Microbiology

MiRNA-1225 Inhibits Osteosarcoma Tumor Growth and Progression by Targeting YWHAZ

Yubao Gong, Zhengren Wei, Jianguo Liu

Summary: The study showed that miR-1225-5P inhibits osteosarcoma cell growth in vitro and tumor growth in vivo by targeting YWHAZ. This suggests that miR-1225-5P could be a potential therapeutic approach for treating osteosarcoma.

ONCOTARGETS AND THERAPY (2021)

Article Environmental Sciences

Ochratoxin A induces human kidney tubular epithelial cell apoptosis through regulating lipid raft/PTEN/AKT signaling pathway

Yanyan Song, Wei Liu, Yao Zhao, Junting Zang, Hang Gao

Summary: OTA induces apoptosis in HK-2 through regulating PTEN/AKT signaling pathway via disrupting lipid raft formation.

ENVIRONMENTAL TOXICOLOGY (2021)

Article Integrative & Complementary Medicine

Predictive Study of the Active Ingredients and Potential Targets of Codonopsis pilosula for the Treatment of Osteosarcoma via Network Pharmacology

Yu-Bao Gong, Shao-Jie Fu, Zheng-Ren Wei, Jian-Guo Liu

Summary: This study used a network pharmacology approach to explore the molecular mechanisms of Dangshen in the treatment of osteosarcoma, identifying 15 active compounds linked to 48 therapeutic targets. The gene enrichment analysis showed that Dangshen may produce a therapeutic effect in osteosarcoma by regulating pathways associated with DNA damage, cell proliferation, apoptosis, invasion, and migration.

EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE (2021)

Article Pharmacology & Pharmacy

Fumonisin B1 exposure induces apoptosis of human kidney tubular epithelial cells through regulating PTEN/PI3K/AKT signaling pathway via disrupting lipid raft formation

Yanyan Song, Wei Liu, Yao Zhao, Junting Zang, Hang Gao

Summary: FB1 exposure induces apoptosis of HK-2 cells by regulating the PTEN/PI3K/AKT signaling pathway and disrupting lipid raft formation.

TOXICON (2021)

Article Biophysics

Functional surfaces for exosomes capturing and exosomal microRNAs analysis

Cristina Potrich, Anna Pedrotti, Cecilia Pederzolli, Lorenzo Lunelli

Summary: This study developed different functional surfaces for capturing exosomes and verified their effectiveness through experiments. Among them, the negatively-charged surface performed the best, capturing a large number of exosomes and successfully analyzing their biomarkers.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Fucoidan-mediated targeted delivery of dasatinib-loaded nanoparticles amplifies apoptosis and endows cytotoxic potential in triple-negative breast cancer

Brojendra Nath Saren, Srushti Mahajan, Mayur Aalhate, Rahul Kumar, Essha Chatterjee, Indrani Maji, Ujala Gupta, Santosh Kumar Guru, Pankaj Kumar Singh

Summary: This study developed P-selectin-targeted dasatinib nanoparticles coated with chitosan and fucoidan (DST-CH-FUC-NPs), which showed sustained release, reduced hemolytic potential, increased cytotoxicity and cellular uptake compared to free dasatinib. These nanoparticles also demonstrated enhanced ROS production, mitochondrial membrane potential damage, apoptosis induction, cell migration inhibition, and disruption of lysosomal membrane integrity.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Graphene oxide-doped chiral dextro-hydrogel promotes peripheral nerve repair through M2 polarization of macrophages

Weiping Deng, Xiaohui Li, Ya Li, Zhongbing Huang, Yulin Wang, Ning Mu, Juan Wang, Tunan Chen, Ximing Pu, Guangfu Yin, Hua Feng

Summary: This study demonstrates the importance of chirality in nerve repair by constructing a GO-phenylalanine derivative hydrogel system. In vivo experiments show that the dextro group significantly improves functional recovery and histological restoration in rat sciatic nerve repair models. The doped GO promotes angiogenesis and myelination. These results suggest that chirality plays a crucial role in promoting nerve regeneration.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Analysis of surfactant production by Bacillus cereus GX7 and optimization of fermentation conditions

Xiaoyan Wang, Jin Gao, Yu Gao, Linlin Zhang, Congchao Xu, Qintong Li, Lin Li, Jianliang Xue

Summary: In this study, a highly effective surfactant producer strain, Bacillus Cereus GX7, was isolated from the oil tank bottom sludge of Shengli Oil Field in China. The biosurfactant produced by GX7 was identified as surfactin, a lipopeptide surfactant, through TLC, FT-IR, and LC-MS/MS analysis. The fermentation process of GX7 was optimized using single-factor experiments, focusing on the composition of fermentation medium and fermentation conditions. Glucose and peptone were found to be the best carbon and nitrogen sources, and the optimum temperature, inoculum amount, pH, rotation speed, and fermentation time for the strain were determined to be 30°C, 1%, 7.5, 150 rpm, and 48 h, respectively. After optimization, the surface tension and emulsification index of the fermentation broth were 26.84 mN/m and 57.84%, respectively. Furthermore, the biosurfactant produced by GX7 demonstrated good stability over a wide range of temperature, pH, and salt concentration.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

A 3D physical model predicting favorable bacteria adhesion

Rodney Marcelo do Nascimento, Christine Grauby-Heywang, Houssem Kahli, Nesrine Debez, Laure Beven, Ivan Helmuth Bechtold, Touria Cohen Bouhacina

Summary: This article presents a theoretical model based on thermodynamic rules to assess the early stages of bacterial biofilm formation on different material surfaces. By utilizing morphological characteristics of bacteria and Atomic Force Microscopy images, the model generates a dataset of energetically minimized states, which can be correlated with bacterial adhesion states.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy

Filipa A. L. S. Silva, Licinia Timochenco, Raquel Costa-Almeida, Jose Ramiro Fernandes, Susana G. Santos, Fernao D. Magalhaes, Artur M. Pinto

Summary: The study demonstrates that by photoreducing nanosized graphene oxide using ultraviolet radiation, nanometric particles with high light-to-heat conversion efficiency and water stability can be obtained. These nanomaterials exhibit high absorption in the near-infrared region and show no cytotoxicity towards human cells, indicating their potential for safe therapy.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Impact of the physical properties of contact lens materials on the discomfort: role of the coefficient of friction

D. Costa, V. De Matteis, F. Treso, G. Montani, M. Martino, R. Rinaldi, M. Corrado, M. Cascione

Summary: This review primarily discusses the relationship between contact lens discomfort (CLD) and the surface properties of contact lenses (CLs), specifically the coefficient of friction (CoF). The review emphasizes the importance of introducing a standardized protocol for measuring CoF and calls for a more precise evaluation of the relationship between surface properties and comfort in CLs users.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Structural rearrangement of elastin under oxidative stress

Debdip Brahma, Tamal Sarkar, Rupal Kaushik, Akshay Narayan Sarangi, Amar Nath Gupta

Summary: This in-vitro study evaluates the effect of reactive oxygen species (ROS) on the structural rearrangement of elastin. The results show that oxidative stress leads to a decrease in protein size and changes in secondary structure, potentially promoting protein aggregation. This study is important for therapeutics aiming to prevent elastin degradation and aging.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

A dual-functional strontium-decorated titanium implants that guides the immune response for osseointegration of osteoporotic rats

Xin Yang, Qiang Wang, Chaoxi Yan, Degang Huang, Yinchang Zhang, Huazheng He, Shouliang Xiong, Congming Li, Pingbo Chen, Tingjun Ye, Dan Hu, Lei Wang

Summary: This study presents a practical and effective strategy to improve osseointegration in patients with osteoporosis. By coating titanium implants with polydopamine followed by strontium modification, the bi-functional implants promote bone regeneration and immune regulation. The results show good biocompatibility, sustained release of strontium ions, and stable osseointegration between bone tissues and implants.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Colloidal crystals array enabled bionic biliary stent for efficient domestic biofluid management

Sengwang Fu, Jianping Zhu, Zhijun Jiang, Yue Cao, Yufei Chen, Lihao Zhang, Sunlong Li, Weipeng Lu, Chengbin Miao, Qing He, Qi Li, Weixing Zhang, Lehao Ren, Yachun Li, Hongchao Shi, Cihui Liu

Summary: Effective management of biofluids is crucial for in vivo surgical interventions. Recent advances include self-sealing needles, drug-eluting stents, and shear-thinning hydrogels. However, complications associated with intestinal mucosal injury and secondary damage still persist. In this study, researchers developed an interpenetrating Janus wettability stent coating that enables unidirectional draining of excessive biofluid. They also demonstrated directional biofluid movement using a self-pumping dressing with potential applications in biofluid collection and disease diagnosis through metal ion detection. This integrated system presents an opportunity for designing wound dressings with effective biofluid management and metal ion detection capabilities.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Biomaterials coated with zwitterionic polymer brush demonstrated significant resistance to bacterial adhesion and biofilm formation in comparison to brush coatings incorporated with antibiotics

Maryam Hassani, Mojtaba Kamankesh, Mazda Rad-Malekshahi, Kobra Rostamizadeh, Farhad Rezaee, Ismaeil Haririan, Seyed Mojtaba Daghighi

Summary: Bacterial adhesion and biofilm formation on the surface of biomaterial implants is a critical problem, and a polymer brush coating with antiadhesive and antimicrobial properties has proven to be highly effective in resolving this issue.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Croconaine conjugated cationic polymeric nanoparticles for NIR enhanced bacterial killing

Huaihong Zhang, Na Liu, Yuting Zhang, Hui Cang, Zhaosheng Cai, Ziqun Huang, Jun Li

Summary: A functionalized cationic polymer, CR-PQAC, was designed and synthesized for photothermal enhanced antimicrobial therapy. The CR-PQAC nanoparticles exhibited significant antibacterial activity and low cytotoxicity against mammalian cells.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology

Ipsita Sahu, Priyadarshi Chakraborty

Summary: Peptide nanotechnology bridges the gap between materials and biological worlds by utilizing self-assembly of short-peptide building blocks. Hydrogels engineered from these short peptides show great potential in biomedical applications, but their weak mechanical properties and limited functional diversity need to be addressed. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can enhance their mechanical properties and expand their functional diversity.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Conductive 3D Ti3C2Tx MXene-Matrigel hydrogels promote proliferation and neuronal differentiation of neural stem cells

Hao Wei, Yajun Gu, Ao Li, Panpan Song, Dingding Liu, Feihu Sun, Xiaofeng Ma, Xiaoyun Qian

Summary: In this study, a stable three-dimensional conductive hydrogel was prepared by cross-linking MXenes to Matrigel hydrogel. The conductive hydrogel promotes the proliferation and differentiation of NSCs, providing new strategies for neural tissue engineering.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)

Article Biophysics

Effect of the oxygenic groups on activated carbon on its hemocompatibility

Yue Zhong, Xiaoli Ge, Juan Zhang, Qun Wei, Feng Wang, Yongke Zhong

Summary: The effect of oxygenic groups on the hemocompatibility of activated carbon was studied through liquid-phase oxidation and subsequent heat treatment. Results showed that the presence of oxygenic groups improved hemocompatibility, while their removal decreased it.

COLLOIDS AND SURFACES B-BIOINTERFACES (2024)