4.7 Article

Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry

Journal

COLLOIDS AND SURFACES B-BIOINTERFACES
Volume 88, Issue 2, Pages 552-558

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfb.2011.07.032

Keywords

Binding mechanism; Aptamer; Thrombin

Funding

  1. Center for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan [NSC 99-2911-1-008-100]

Ask authors/readers for more resources

Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin has two electropositive exosites. One is the fibrinogen-binding site and the other is the heparin-binding site. Over the past decade, two thrombin-binding aptamers (15-mer and 29-mer) were reported by SELEX technique. Recently, many studies examined the interactions between the 15-mer aptamer and thrombin extensively, but the data on the difference of these two aptamers binding to thrombin are still lacking and worth investigating for fundamental understanding. In the present study, we combined conformational data from circular dichroism (CD), kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to compare the binding mechanism between the two aptamers with thrombin. Special attentions were paid to the formation of G-quadruplex and the effects of ions on the aptamer conformation on the binding and the kinetics discrimination between specific and nonspecific interactions of the binding. The results indicated reasonably that the 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions, while the 29-met aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available