4.4 Article

Debundling of multiwalled carbon nanotubes in N, N-dimethylacetamide by polymers

Journal

COLLOID AND POLYMER SCIENCE
Volume 292, Issue 10, Pages 2571-2580

Publisher

SPRINGER
DOI: 10.1007/s00396-014-3305-x

Keywords

Multiwalled carbon nanotubes (MWCNTs); Dispersion; N,N-dimethylacetamide (DMAc); Block copolymer; Polymer wrapping; Particle size distribution

Ask authors/readers for more resources

Structure and properties of the dispersions of multiwalled carbon nanotubes (MWCNTs) in N,N-dimethylacetamide (DMAc) with different dispersing polymers: polyvinylpyrrolidone (PVP), poly(ethyleneoxide), triblock copolymers poly(ethyleneoxide)-b-poly(propyleneoxide)-b-poly(ethyleneoxide) (Pluronic F127 and Pluronic F108), ethylenediamine tetrakis(ethoxylate-b-propoxylate) tetrol, and ethylenediamine tetrakis(propoxylate-b-ethoxylate) tetrol (Tetronic) of different molecular weights were studied. All studied polymers were shown to be able to disperse MWCNT in DMAc, and MWCNT dispersions appear free of aggregates by visual inspection even after 3 months of keeping at room temperature. Dispersions were characterized by UV-VIS absorption spectroscopy and dynamic light scattering measurements. PVP was found to be the best dispersing polymer for MWCNT in DMAc. It was shown that the yield of the dispersed MWCNT and the average particle size of the MWCNT in DMAc depend on the chemical nature, molecular weight of the dispersing polymer, and solvent quality. The difference in dispersive capacity of the studied polymers is attributed to different dispersion mechanisms for PVP (polymer wrapping model) and for other studied dispersing polymers (loose adsorption model), which have different efficiencies in DMAc. It was revealed that an increase of dispersing polymer (PVP) concentration at the range of 4.7-37.6 g l(-1) results in an average particle size enlargement and MWCNT final concentration reduction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available