4.7 Article

Basic Fibroblast Growth Factor Protects C17.2 Cells from Radiation-Induced Injury through ERK1/2

Journal

CNS NEUROSCIENCE & THERAPEUTICS
Volume 18, Issue 9, Pages 767-772

Publisher

WILEY-BLACKWELL
DOI: 10.1111/j.1755-5949.2012.00365.x

Keywords

apoptosis; basic fibroblast growth factor; C17; 2 neural stem cells; ERK1; 2; radiation-induced neural injury

Funding

  1. National Natural Science Foundation of China [30970966]

Ask authors/readers for more resources

Aims To establish a radiation-induced neural injury model using C17.2 neural stem cells (NSCs) and to investigate whether basic fibroblast growth factor (bFGF) can protect the radiation-induced injury of C17.2 NSCs. Furthermore, we aim to identify the possible mechanisms involved in this model. Methods C17.2 NSCs received a single exposure (3, 6, and 9 Gy, respectively) at a dose rate of 300 cGy/min with a control group receiving 0 Gy. Different concentrations of bFGF were added for 24 h, 5 min postirradiation. The MTS assay and flow cytometry were used to detect cytotoxicity and apoptosis. Expression of FGFR1, ERK1/2, and p-ERK1/2 proteins was detected with or without U0126 was pretreated prior to C17.2 NSCs receiving irradiation. Results C17.2 NSCs showed a dose-dependent cell death as the dose of radiation was increased. Additionally, the rate of apoptosis in the C17.2 NSCs reached 31.2 +/- 1.23% in the 6 Gy irradiation group, which was the most significant when compared to the other irradiation treated groups. bFGF showed protective effect on cell apoptosis in a dose-dependent manner. The mean percentage of apoptotic cells decreased to 7.83 +/- 1.75% when 100 ng/mL bFGF was given. Furthermore, U0126 could block the protective effect of bFGF by inhibiting the phosphorylation of ERK1/2. Conclusions An in vitro cellular model of radiation-induced apoptosis of NSCs, in C17.2 NSCs, was developed successfully. Additionally, bFGF can protect neurons from radiation injury in vitro via the ERK1/2 signal transduction pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available