4.3 Article

Neuroprotection in Glaucoma Using Calpain-1 Inhibitors: Regional Differences in Calpain-1 Activity in the Trabecular Meshwork, Optic Nerve and Implications for Therapeutics

Journal

CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS
Volume 7, Issue 3, Pages 295-304

Publisher

BENTHAM SCIENCE PUBL
DOI: 10.2174/187152708784936644

Keywords

Glaucoma; calpain; trabecular meshwork; isolevuglandin; lipid oxidation; posttranslational modifications; neuroprotection

Funding

  1. National Glaucoma Research Program of American Health Assistance Foundation
  2. NIH [EY015266, GM021249]

Ask authors/readers for more resources

Glaucoma is a group of irreversible blinding eye diseases affecting over 70 million people worldwide. Systemic delivery of calpain-1 inhibitors was proposed as a neuroprotection strategy for the prevention of progressive optic nerve damage in glaucoma. We present a general review of calpain-1 and an account of vast differences in processing of calpain-1 in the trabecular meshwork (TM) and the optic nerve. Calpain-1 accumulates in the glaucomatous TM tissues in vivo. However, calpain-1 activity is substantially lower in the glaucomatous TM compared to controls, apparently owing to partial degradation, and modification by lipid oxidation products such as iso [4] levuglandin E2 (iso [4] LGE(2)). Treatment of calpain-1 with iso [4] LGE(2) in vitro results in covalent modification, inactivation, and resistance to protease digestion. Iso [4]LGE(2)-modified calpain-1 appeared to undergo ubiquitination in the TM by cellular degradation machinery mediated by ubch1-2, ubch5,6 and E6-AP, E2 and E3 enzymes respectively. In the TM, iso [4] LGE(2)-modified calpain-1 loading impairs the cellular proteasome activity consistent with competitive inhibition and formation of suicidal high molecular weight aggregates. In contrast, higher calpain-1 activity, that appears to be under translational control, was observed in glaucomatous optic nerve compared to control. Therapeutic neuroprotection strategies using calpain-1 inhibitors will require consideration of such anatomic differences in its activity and biosynthesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available