4.5 Article

Microstructure and Tensile Properties of Mg (AM60)/Al2O3 Metal Matrix Composites with Varying Volume Fractions of Fiber Reinforcement

Journal

JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
Volume 24, Issue 12, Pages 4601-4611

Publisher

SPRINGER
DOI: 10.1007/s11665-015-1772-y

Keywords

alumina fiber; composite; magnesium; microstructure; tensile properties; volume fraction

Ask authors/readers for more resources

Magnesium alloy AM60 matrix-based composite reinforced with 7, 9, 11, 22, and 35 vol.% of Al2O3 fibers was squeeze cast. The microstructure and mechanical properties were investigated in comparison with the matrix alloy AM60. The results of tensile testing indicated that the addition of Al2O3 fibers to magnesium alloy AM60 led to a significant improvement in mechanical properties. As the fiber volume fraction increased, the strengths and moduli of the composites were enhanced considerably. However, the notable increase in strengths was at sacrifice in elongation. Microstructural analyses via scanning electron microscopy (SEM) revealed that the grain size decreased with increasing volume fractions of reinforcement. The restriction of grain growth by the limited inter-fiber spacing could be the primary mechanism for a reduction in the grain size of the matrix alloy. The SEM fractography evidently reveals that the debonding of fibers from the matrix alloy and the fiber cracking were two primary mechanisms for the tensile failure of the composites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available