4.5 Article

Temperature change and macroinvertebrate biodiversity: assessments of organism vulnerability and potential distributions

Journal

CLIMATIC CHANGE
Volume 119, Issue 2, Pages 421-434

Publisher

SPRINGER
DOI: 10.1007/s10584-013-0720-9

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF)
  2. Korean government (MEST) [2010-0027360]
  3. National Research Foundation of Korea [2010-0027360] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Peninsular environments are ecosystems that are one of the most vulnerable to global warming. Despite the importance of conserving regional biodiversity, peninsular environments are among the least studied with respect to the influences of global warming. In this study, we used data on benthic macroinvertebrate communities from 521 sites across Korea (a nationwide scale) to evaluate the potential impact of temperature increases on river ecosystems. Weighted averaging regression models (WARMs) were used to project the relationships between relative macroinvertebrate abundance and water temperature, based on the temperature data of the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Maximum tolerance water temperatures were used to quantify the risks to macroinvertebrates at the catchment and national scales. Ambient air temperatures in the 2090s were projected to increase by an average of 3.4 degrees C relative to the baseline of the 2000s at the national scale. Mayflies, stoneflies and caddisflies were identified as potentially the most sensitive taxa to global warming. The impact of global warming on macroinvertebrates was predicted to be minimal prior to the 2060s; however, by the 2080s, species loss was predicted to be 55%. Potential distribution ranges of cold water species in the future decades were expected to decrease continuously over time, while those of warm species were expected to increase from the 2000s to the 2040s and then decrease until the 2080s. Our projections may be useful for understanding how climate parameters affect the biogeographical patterns of aquatic biodiversity from a thermal-preference perspective.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available