4.2 Article

Model inter-comparison between statistical and dynamic model assessments of the long-term stability of blanket peat in Great Britain (1940-2099)

Journal

CLIMATE RESEARCH
Volume 45, Issue 1, Pages 227-U281

Publisher

INTER-RESEARCH
DOI: 10.3354/cr00974

Keywords

Peatland; Carbon; Climate change; Bioclimatic envelope model; Dynamic model; Uplands; ECOSSE; MILLENNIA; Durham carbon model

Funding

  1. Environment Agency [Sc070036]
  2. NERC
  3. Grantham Institute for Climate Change, Imperial College
  4. Royal Society
  5. NERC/FREE [NE/E002242/1]
  6. UKPopNet (NERC) initiative
  7. Natural Environment Research Council [ceh010023, earth010003, NE/E002242/1, quest010001] Funding Source: researchfish
  8. NERC [quest010001, earth010003, NE/E002242/1] Funding Source: UKRI

Ask authors/readers for more resources

We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available