4.6 Article

Climatic responses to anthropogenic groundwater exploitation: a case study of the Haihe River Basin, Northern China

Journal

CLIMATE DYNAMICS
Volume 42, Issue 7-8, Pages 2125-2145

Publisher

SPRINGER
DOI: 10.1007/s00382-013-1995-2

Keywords

Groundwater exploitation; Climatic response; Haihe River Basin; Sensitivity test

Funding

  1. National Basic Research Program of China [2010CB428403, 2010CB951001]
  2. National Natural Science Foundation of China [91125016]
  3. Chinese Academy of Sciences [XDA05110102]

Ask authors/readers for more resources

In this study, a groundwater exploitation scheme is incorporated into the regional climate model, RegCM4, and the climatic responses to anthropogenic alteration of groundwater are then investigated over the Haihe River Basin in Northern China where groundwater resources are overexploited. The scheme models anthropogenic groundwater exploitation and water consumption, which are further divided into agricultural irrigation, industrial use and domestic use. Four 30-year on-line exploitation simulations and one control test without exploitation are conducted using the developed model with different water demands estimated from relevant socioeconomic data. The results reveal that the groundwater exploitation and water consumption cause increasing wetting and cooling effects on the local land surface and in the lower troposphere, along with a rapidly declining groundwater table in the basin. The cooling and wetting effects also extended outside the basin, especially in the regions downwind of the prevailing westerly wind, where increased precipitation occurs. The changes in the four exploitation simulations positively relate to their different water demands and are highly non-linear. The largest changes in climatic variables usually appear in spring and summer, the time of crop growth. To gain further insights into the direct changes in land-surface variables due to groundwater exploitation regardless of the atmospheric feedbacks, three off-line simulations using the land surface model Community Land Model version 3.5 are also conducted to distinguish these direct changes on the land surface of the basin. The results indicate that the direct changes of land-surface variables respond linearly to water demand if the climatic feedbacks are not considered, while non-linear climatic feedbacks enhance the differences in the on-line exploitation simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available