4.5 Article

Toward clean environment: evaluation of solar electric power technologies using fuzzy logic

Journal

CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
Volume 14, Issue 2, Pages 357-367

Publisher

SPRINGER
DOI: 10.1007/s10098-011-0407-8

Keywords

Fuzzy sets methodology; Solar electric power; Control technology

Ask authors/readers for more resources

The rapid expansion of the use of solar energy power plants worldwide is a subject that is being followed with interest. Fuzzy logic methodology is used for evaluating the solar thermal power technology, it compresses huge amount of data into smaller sets, and it has the ability to decide between different solar technologies on the basis of their benefits and costs. The most often considered solar technologies were parabolic trough, central receiver, dish sterling engine, compact linear Fresnel reflector (CLFR), solar chimney, photovoltaic (PV), and solar pond. The aim of our research is to provide the needed information to make a judgment or a decision of adopting the most preferred solar technology in terms of installation and development using fuzzy set methodology. The criteria of the evaluation were based on different parameters, i.e., power capacity, efficiency, availability, capacity factor, storage capability, cost, maturity, water usage, land usage, and safety. The key barriers and features for each technology on the basis of benefit-to-cost ratios are addressed. The results showed that CLFR was found to be the best choice in terms of research, development, and implementation, followed by parabolic trough technology, then the central receiver technology, dish sterling engine, solar chimney, PV, and solar pond, according to the order of preference.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available