4.7 Article

Visceral Adipose Tissue-derived Serine Proteinase Inhibitor Inhibits Apoptosis of Endothelial Cells as a Ligand for the Cell-Surface GRP78/Voltage-dependent Anion Channel Complex

Journal

CIRCULATION RESEARCH
Volume 112, Issue 5, Pages 771-+

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.111.300049

Keywords

apoptosis; atherosclerosis; diabetes mellitus; endothelium

Funding

  1. Japan Society for the Promotion of Science [24790926, 23390241, 23659470, 23126516, 21249053]
  2. Japan Heart Foundation
  3. Astellas/Pfizer
  4. Grants-in-Aid for Scientific Research [23390241, 24790926, 23659470, 23126516, 21249053] Funding Source: KAKEN

Ask authors/readers for more resources

Rationale: Visceral adipose tissue-derived serine proteinase inhibitor (vaspin) is an adipokine identified from visceral adipose tissues of genetically obese rats. Objective: The role of vaspin in the diabetic vascular complications remains elusive, and we investigated the effects of vaspin on the vascular function under the diabetic milieu. Methods and Results: Adenovirus carrying the full length of the vaspin gene (Vaspin-Ad) ameliorated intimal proliferation of balloon-injured carotid arteries in diabetic Wistar rats. The expression of Ccl2, Pdgfb, and Pdgfrb genes was significantly reduced by the treatment of Vaspin-Ad. In cuff-injured femoral arteries, the intimal proliferation was ameliorated in vaspin transgenic (Vaspin Tg) mice. The application of recombinant vaspin and Vaspin-Ad promoted the proliferation and inhibited the apoptosis of human aortic endothelial cells. Adenovirus expressing vaspin with calmodulin and streptavidin-binding peptides was applied to human aortic endothelial cells, subjected to tandem tag purification and liquid chromatography-tandem mass spectrometry, and we identified GRP78 (78-kDa glucose-regulated protein) as an interacting molecule. The complex formation of vaspin, GRP78, and voltage-dependent anion channel on the plasma membrane was confirmed by the immunoprecipitation studies using aortas of Vaspin Tg mice. The binding assay using 125I-vaspin in human aortic endothelial cells revealed high-affinity binding (dissociation constant = 0.565x10(-9) m) by the treatment of 5 mu M thapsigargin, which recruited GRP78 from the endoplasmic reticulum to plasma membrane by inducing endoplasmic reticulum stress. In human aortic endothelial cells, vaspin induced phosphorylation of Akt and inhibited the kringle 5-induced Ca2+ influx and subsequent apoptosis. Conclusions: Vaspin is a novel ligand for the cell-surface GRP78/voltage-dependent anion channel complex in endothelial cells and promotes proliferation, inhibits apoptosis, and protects vascular injuries in diabetes mellitus. (Circ Res. 2013;112:771-780.)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available