4.3 Article

Challenging the Concept of Recycling as a Mechanism for the Evolution of Homochirality in Chemical Reactions

Journal

CHIRALITY
Volume 21, Issue 3, Pages 359-362

Publisher

WILEY
DOI: 10.1002/chir.20592

Keywords

homochirality; microscopic reversibility; reversibility; rate constants; kinetic modeling

Ask authors/readers for more resources

The concept that recycling of reactants may be key to the spontaneous generation of a homochiral state in closed autocatalytic reaction networks has recently been introduced and has been supported by computer simulations of such reaction networks. It has been suggested that unidirectional cycles maintained away from equilibrium may avoid the inevitable establishment of a racemic state, and under such conditions the explicit reverse reactions dictated by microscopic reversibility may be all be treated as having negligible rates. We show here that because the equilibrium constants in a recycled network are interdependent, it is not valid to neglect all reverse reactions simultaneously; a very low value for the rate constant of one reverse reaction in the network dictates that another reverse reaction in the same network will exhibit a large rate constant. This conclusion is general and applies to any closed mass system where the energy input is subject to microscopic reversibility. Therefore, chemical reversibility cannot be invoked as a mechanism for the evolution of a single chiral molecular state in thermally activated reactions. Chirality 21:359-362, 2009. (C) 2008 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available