4.2 Article

Partial melting of the dry mafic continental crust: Implications for petrogenesis of C-type adakites

Journal

CHINESE SCIENCE BULLETIN
Volume 55, Issue 22, Pages 2428-2439

Publisher

SCIENCE PRESS
DOI: 10.1007/s11434-010-3224-2

Keywords

C-type adakites; MELTs software; mafic lower continental crust (LCC); eclogite melting; Eu anomaly

Funding

  1. National Natural Science Foundation of China [40773013]

Ask authors/readers for more resources

C-type adakites have been commonly considered as a result of partial melting of the mafic lower continental crust (LCC) at high pressure, as supported by high P-T experiments on hydrous basalts. However, because the mafic eclogitic LCC is generally dry, experiments on water-bearing materials cannot be used to constrain the melting processes of the dry mafic LCC. Due to the lack of systematic melting experimental studies on dry mafic rocks at crustal pressures, MELTs software was applied to simulating melting of the dry mafic LCC at 1-2 GPa. Comparison of model results with experimental data indicates that, when melting degree is greater than 20%, melts from the dry mafic LCC at 1-3 GPa cannot produce the C-type adakitic melt with high SiO2 content (similar to 70%). Although the limited experimental results about dry mafic rock melting at 1-2 GPa in the literature suggest that low degree melting (< 10%) cannot produce silicic melt either, MELTs software simulation shows that, at pressure > 1.8 GPa, low-degree melting can produce dacitic melt with high K2O/Na2O (similar to 1) if SiO2 content of the melt is controlled by residual garnet. Furthermore, the simulation also suggests that, if pressure is < 1.8 GPa, abundant plagioclase (plg) in the residual phase may decrease SiO2 content in the melt to below 62%, much lower than that of the C-type adakites observed in eastern China. Given the high P-T conditions required to produce melts with high SiO2 and extremely low HREE contents, such melts could easily be contaminated by other crustal-derived melts, implying that the C-type adakites from eclogite melting could be less commonly observed in the outcrops than previously believed. Besides the interpretation that garnet fractionates Sr, Y, and REE, high Sr/Y and La/Yb could be also produced by multiple ways such as inheriting the source features and fractional crystallizing clinopyroxene (cpx). Therefore, it may be problematic using high Sr/Y and La/Yb as criteria to identify adakites. Instead, REE patterns with strong depletion of HREE relative to MREE (e.g. high Gd/Yb) could be a better parameter to identify the role of garnet and thus adakites. Finally, geochemical models based on MELTs simulation indicate that Eu anomaly cannot be simply used to constrain the role of plg in magmatism because Eu anomaly in the melt is a function of source characteristics, oxygen fugacity (fO(2)) of magmatic systems, and plg/mafic minerals mode ratio.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available