4.5 Article

Making variability less variable: matching expression system and host for oxygenase-based biotransformations

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10295-015-1615-8

Keywords

Pseudomonas putida; Monooxygenase; Clonal variability; Solvent tolerance; alk-regulatory system

Funding

  1. Federal Ministry of Education and Research-BMBF [EIB.10.0.41]

Ask authors/readers for more resources

Variability in whole-cell biocatalyst performance represents a critical aspect for stable and productive bioprocessing. In order to investigate whether and how oxygenase-catalyzed reactions are affected by such variability issues in solvent-tolerant Pseudomonas, different inducers, expression systems, and host strains were tested for the reproducibility of xylene and styrene monooxygenase catalyzed hydroxylation and epoxidation reactions, respectively. Significantly higher activity variations were found for biocatalysts based on solvent-tolerant Pseudomonas putida DOT-TIE and S12 compared with solvent-sensitive P. putida KT2440, Escherichia coli JM101, and solvent-tolerant Pseudomonas taiwanensis VLB120. Specific styrene epoxidation rates corresponded to cellular styrene monooxygenase contents. Detected variations in activity strictly depended on the type of regulatory system employed, being high with the alk- and low with the lac-system. These results show that the occurrence of clonal variability in recombinant gene expression in Pseudomonas depends on the combination of regulatory system and host strain, does not correlate with a general phenotype such as solvent tolerance, and must be evaluated case by case.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available