4.5 Article

Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

Journal

CHINESE PHYSICS LETTERS
Volume 27, Issue 2, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0256-307X/27/2/026401

Keywords

-

Funding

  1. National Natural Science Foundation of China [50971105]

Ask authors/readers for more resources

Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe47.5Cu47.5Sn5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51-329K (0.19T(L)). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available