4.5 Article

The Influence of Organic-Film Morphology on the Efficient Electron Transfer at Passivated Polymer-Modified Electrodes to which Nanoparticles are Attached

Journal

CHEMPHYSCHEM
Volume 14, Issue 10, Pages 2190-2197

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.201300047

Keywords

electron transfer; gold; nanoparticles; organic films; passivated electrodes

Funding

  1. Australia Research Council [LP110200610]
  2. Australian Research Council [LP110200610] Funding Source: Australian Research Council

Ask authors/readers for more resources

The impact of polymer-film morphology on the electron-transfer process at electrode/organic insulator/nanomaterial architectures is studied. The experimental data are discussed in the context of the most recent theory modelling the nanoparticle-mediated electron-transfer process at electrode/insulator/nanomaterial architectures proposed by Chazalviel and Allongue [J. Am. Chem. Soc. 2011, 133, 762-764]. A previous report [Anal. Chem. 2013, 85, 1073-1080] by us qualitatively verified the theory and demonstrates a transition from thickness-independent to thickness-dependent electron transfer as the layer thickness exceeds a certain threshold. This follow-up study explores a different polymer, poly(phenylenediamine), and focuses on the effect of the uniformity of organic film on electron transfer at these hybrid structures. Electron-transfer kinetics of modified surfaces, which were assessed using the redox species Ru(NH3)(6)(3+) in aqueous solution, showed that a thickness-dependent electron-transfer regime is achieved with poly(phenylenediamine). This is attributed to the sufficiently thin films never being fabricated with this polymer. Rather, it is suggested that thin poly(phenylenediamine) layers have a globular structure with poor film homogeneity and pinhole defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available