4.7 Article

Physiological and biochemical responses of rice seeds to phosphine exposure during germination

Journal

CHEMOSPHERE
Volume 93, Issue 10, Pages 2239-2244

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2013.07.074

Keywords

Phosphine; Rice seeds; Seed germination; Antioxidant enzymes; Lipid peroxidation

Funding

  1. National Natural Science Foundation of China [41071305]
  2. Guangdong Provincial Social Development Research Project [2011B031000012]
  3. Fundamental Research Funds for the Central Universities [2012ZM0040]
  4. Education Department Breeding Project of Guangdong, China [LYM11011]

Ask authors/readers for more resources

Rice seeds (Tianyou, 3618) were used to examine the physiological and biochemical responses to phosphine exposure during germination. A control (0 mg m(-3)) and four concentrations of phosphine (1.4 mg m(-3), 4.2 mg m(-3), 7.0 mg m(-3) and 13.9 mg m(-3)) were used to treat the rice seeds. Each treatment was applied for 90 min once per day for five days. The germination rate (GR); germination potential (GP); germination index (GI); antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT); and lipid peroxidation measured through via malondialdehyde (MDA) were determined as indicators of the physiological and biochemical responses of the rice seeds to phosphine exposure. These indicators were determined once per day for five days. The results indicated that the GR, GP and Cl of the rice seeds markedly decreased after phosphine exposure. The changes in the activities of the antioxidant enzymes due to the phosphine exposure were also significant. The exposure lowered the CAT and SOD activities and increased POD activity in the treated rice seeds compared with controls. The MDA content exhibited a slow increase trend with the increase of phosphine concentration. These results suggest that phosphine has inhibitory effects on seed germination. In addition, phosphine exposure caused oxidative stress in the seeds. The antioxidant enzymes could play a pivotal role against oxidative injury. Overall, the effect of phosphine on rice seeds is different from what has been reported previously for insects and mammals. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available