4.7 Article

Determination of detoxification to Daphnia magna of four pharmaceuticals and seven surfactants by activated sludge

Journal

CHEMOSPHERE
Volume 88, Issue 4, Pages 459-466

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2012.02.070

Keywords

Biodegradation; Daphnia; Detoxification; Pharmaceuticals; Sewage; Surfactants

Ask authors/readers for more resources

Pharmaceuticals are bioactive compounds generally resistant to biodegradation, which can make them problematic when they are released into nature. The use pattern for pharmaceuticals means that they are discharged into water via sewage treatment plants. Also surfactants are discharged through sewage treatment plants, primarily due to their use in detergents and shampoos and other cleaners. In this study the acute toxicity to Daphnia magna of four pharmaceuticals (ciprofloxacin, ibuprofen, paracetamol and zinc pyrithione) and seven surfactants (C8 alkyl glucoside, C6 alkyl glucoside, sodium caprylimidiopropionate, tallow-trimethyl-ammonium chloride, potassium decylphosphate, propylheptanol ethoxylate and alkylmonoethanolamide ethoxylate) was determined. Abiotic (without activated sludge bacteria) and biotic (with activated sludge bacteria) detoxification was also determined. The 24-h EC50s ranged from 2 mu g L-1 for the most toxic substance (zinc pyrithione) to 2 g L-1 for the least toxic compound (C6 alkyl glucoside). Detoxification rates determined as the ratio between initial EC50 and EC50 after 1 week in water with activated sludge bacteria ranged from 0.4 (paracetamol) to 13 (zinc pyrithione). For most of these chemicals detoxification rate decreased after 1 week, but for one (alkylmonoethanolamide ethoxylate) it increased from about 2 to 30 times after 2 weeks. Many of these chemicals were detoxified also abiotically at about the same rate as biotically. Further studies are needed to determine the degradation products that were precipitated (aggregated) for some of the tested chemicals. Altogether, this study has shown that there are large differences in toxicity among chemicals entering sewage treatment plants, but also that the detoxification of them can differ. Therefore, the detoxification should receive more attention in the hazard and risk assessment of chemicals entering sewage treatment plants. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available