4.6 Article

Lipid Switches: Stimuli-Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 25, Issue 1, Pages 20-25

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201803389

Keywords

drug delivery; lipids; liposomes; molecular recognition; self-assembly

Funding

  1. National Science Foundation [DMR-1807689]
  2. com for Smoke and Haze Cloud Dover Stock Photo-PNG 5

Ask authors/readers for more resources

Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available