4.6 Article

Self-Organized Polymer Nanocomposite Inverse Opal Films with Combined Optical Properties

Journal

CHEMISTRY-A EUROPEAN JOURNAL
Volume 17, Issue 2, Pages 655-660

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201001147

Keywords

aggregation; honeycomb pattern; nanoparticles; thin films; self-assembly

Funding

  1. NSFC [20625307]
  2. National Basic Research Program of China (973 Program) [2009CB930303]

Ask authors/readers for more resources

Inverse opal films with unique optical properties have potential as photonic crystal materials and have stimulated wide interest in recent years. Herein, iridescent hybrid polystyrene/nanoparticle macroporous films have been prepared by using the breath-figure method. The honeycomb-patterned thin films were prepared by casting gold nanoparticle-doped polystyrene solutions in chloroform at high relative humidity. Highly ordered hexagonal arrays of monodisperse pores with an average diameter of 880 nm are obtained. To account for the observed features, a microscopic phase separation of gold nanoparticles is proposed to occur in the breath-figure formation. That is, individual gold nanoparticles adsorb at the solution/water interface and effectively stabilize condensed water droplets on the solution surface in a hexagonal array. Alternatively, at high nanoparticle concentrations the combination of breath-figure formation and nanoparticle phase separation leads to hierarchical structures with spherical aggregates under a honeycomb monolayer. The films show large features in both the visible and NIR regions that are attributed to a combination of nanoparticle and ordered-array absorptions. Organic ligand-stabilized CdSe/CdS quantum dots or Fe3O4 nanoparticles may be loaded into the honeycomb structure to further modify the films. These results demonstrate new methods for the fabrication and functionalization of inverse opal films with potential applications in photonic and microelectronic materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available