4.5 Article

Identification of Furan Metabolites Derived from Cysteine-cis-2-Butene-1,4-dial-Lysine Cross-Links

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 23, Issue 1, Pages 142-151

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx9003215

Keywords

-

Funding

  1. National Cancer Institute Center [CA-77598]
  2. National Institutes of Health [ES-10577]
  3. NATIONAL CANCER INSTITUTE [P30CA077598] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R01ES010577] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Furan is a rodent hepatotoxicant and carcinogen. Because this compound is an important industrial intermediate and has been detected in heat-processed foods and smoke, humans are likely exposed to this toxic compound. Characterization of urinary metabolites of furan will lead to the development of biomarkers to assess human health risks associated with furan exposure. Previous studies indicate that furan is oxidized to it reactive alpha,beta-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA), in a reaction catalyzed by cytochrome P450. Five previously characterized metabolites Lire derived from the reaction of BDA with cellular nucleophiles such as glutathione and protein. They include the monoglutathione reaction product, N-[4-carboxy-4-(3-mercapto-1H-pyrrol-1-yl)-1-oxobutyl]-L-cystenylglycine cyclic sulfide, and its downstream metabolite, S-[1-(1,3-dicarboxypropyl)-1H-pyrrol-3-yl]methythiol, as well as (R)-2-acetylamino-6-(2,5-dihydro-2-oxo-1H-pyrrol-1-yl)-1-hexanoic acid and N-acetylamino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine and its sulfoxide. The last two compounds are downstream metabolites of a BDA-derived cysteine-lysine cross-link. S-[1-(5-amino-5-carboxypentyl)-1H-pyrrol-3-yl]-L-cysteine. In this report, we present the characterization of seven additional urinary furan metabolites, all of which are derived front this cross-link. The cysteinyl residue is subject to several biotransformation reactions, including N-acetylation and S-oxidation. Alternatively, it can undergo beta-elimination followed by S-methylation to a methylthiol intermediate that is further oxidized to it sulfoxide. The lysine portion 4 the cross-link either is N-acetylated or undergoes a transamination reaction to generate an alpha-ketoacid metabolite that undergoes oxidative decarboxylation. Some of these metabolites are among the most,oil by LC-MS/MS analysis, indicating that the oxidation abundant furan metabolites present in urine as judged by LC-MS/MS analysis, indicating that the oxidation of furan to BDA and BDA's Subsequent reaction with cellular cysteine and lysine residues may represent it significant in Vivo pathway of furan biotransformation. Because they Lire derived from cellular BDA reaction products, these metabolites are markers of furan exposure and bioactivation and could be explored as potential biomarkers in human studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available