4.5 Article

Reductive Activation of Mitomycin C by Thiols: Kinetics, Mechanism, and Biological Implications

Journal

CHEMICAL RESEARCH IN TOXICOLOGY
Volume 22, Issue 10, Pages 1663-1668

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/tx9002758

Keywords

-

Funding

  1. Spanish Ministry of Education and Science [CTQ200607854/BQU]
  2. Xunta de Galicia [PGIDT06PX1B209109PR]

Ask authors/readers for more resources

The clinically used antitumor antibiotic mitomycin C requires a reductive activation to be converted to a bis-electrophile that forms several covalent adducts with DNA, including an interstrand cross-link which is considered to be the lesion responsible for the cytotoxic effects of the drug. Enzymes such as cytochrome P450 reductase and DT-diaphorase have traditionally been implicated in the bioreduction of mitomycin C, but recent reports indicate that enzymes containing a dithiol active site are also involved in the metabolism of mitomycin C. The reductive activation can also be effected in vitro with chemical reductants, but until now, mitomycin C was considered to be inert to thiols. We report here that mitomycin C can, in fact, be reductively activated by thiols. We show that the reaction is autocatalytic and that the end product is a relatively stable aziridinomitosene that can be trapped by adding several nucleophiles after the activation reaction. Kinetic studies show that the reaction is highly sensitive to pH and does not proceed or proceeds very slowly at neutral pH, an observation that explains the unsuccessful results on previous attempts to activate mitomycin C with thiols. The optimum pH for the reactions is around the pK(a) values of the thiols used in the activation. A mechanism for the reaction is hypothesized, involving the initial formation of a thiolate-mitomycin adduct, that then evolves to give the hydroquinone of mitomycin C and disulfide. The results presented here provide a chemical mechanism to explain how some biological dithiols containing an unusually acidic thiol group (deprotonated at physiological pH) participate in the modulation of mitomycin C cytotoxicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available