4.5 Article

Natural variables for controlling quantum dynamics

Journal

CHEMICAL PHYSICS
Volume 352, Issue 1-3, Pages 77-84

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.chemphys.2008.05.013

Keywords

quantum control; quantum control landscape; quantum optimal control; dimension reduction

Funding

  1. DOE
  2. NDSEG

Ask authors/readers for more resources

A quantum control landscape is the expectation value of an observable expressed as a function of the control variables, and the local geometry of the landscape for state-to-state transitions is explored for its implications upon practical searches for optimal controls. The gradient of the landscape with respect to the control field is shown to always lie in a low-dimensional subspace spanned by basis functions bearing specific knowledge of the system physics, thereby comprising a natural set of variables for the particular optimal control application. The enumeration of these basis functions provides an upper bound on the required number of properly identified control variables. A specific experimental protocol is suggested to utilize the geometric structure of the landscape for identifying a reduced set of control variables for practical laboratory implementation. Simulations on simple systems are used to illustrate the characteristics of the natural control variables and the prospective experimental protocol. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available