4.6 Article

Design of aerosol particle coating: Thickness, texture and efficiency

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 65, Issue 20, Pages 5471-5481

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2010.07.011

Keywords

Particle formation; Hermetic layering; Population balance; Condensation; Nanoparticle encapsulation; Powder technology

Funding

  1. Swiss National Science Foundation (SNF) [200021-119946/1]
  2. European Research Council
  3. Swiss National Science Foundation (SNF) [200021_119946] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Core-shell particles preserve the performance (e.g. magnetic, plasmonic or opacifying) of a core material, while modifying its surface with a shell that facilitates (e.g. by blocking its reactivity) their incorporation into a host liquid or polymer matrix. Here coating of titania (core) aerosol particles with thin silica shells (films or layers) is investigated at non-isothermal conditions by a trimodal aerosol dynamics model, accounting for SiO2 generation by gas phase and surface oxidation of hexamethyldisiloxane (HMDSO) vapor, coagulation and sintering. After TiO2 particles have reached their final primary particle size (e.g. upon completion of sintering during their flame synthesis), coating starts by uniformly mixing them with HMDSO vapor that is oxidized either in the gas phase or on the particles' surface resulting in SiO2 aerosols or deposits, respectively. Sintering of SiO2 deposited onto the core TiO2 particles takes place transforming rough into smooth coating shells depending on the process conditions. The core-shell characteristics (thickness, texture and efficiency) are calculated for two limiting cases of coating shells: perfectly smooth (e.g. hermetic) and fractal-like. At constant TiO2 core particle production rate, the influence of coating weight fraction, surface oxidation and core particle size on coating shell characteristics is investigated and compared to pertinent experimental data through coating diagrams. With an optimal temperature profile for complete precursor conversion, the TiO2 aerosol and SiO2-precursor (HMDSO) vapor concentrations have the strongest influence on product coating shell characteristics. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available